Learning and Reasoning on Graph for Recommendation

Slides in https://next-nus.github.io/

Xiang Wang National University of Singapore

Xiangnan He University of Science and Technology of China

Tat-Seng Chua National University of Singapore

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation (~40mins)
- Part II: Random Walk for Recommendation (~20mins)
- Part III: Network Embedding for Recommendation (~20 mins)
- Part III: Graph Neural Networks for Recommendation (~100 mins)

Age of Information Explosion

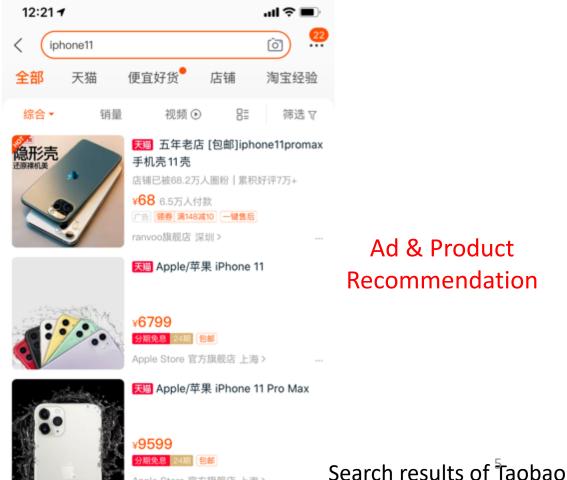
Serious Issue of Information Overloading

- Weibo: >500M posts/day
- Flickr: >300M images/day
- Kuaishou: >20M microvideos/day

Ubiguitous Personalized Recommendation

Recommendation has been widely applied in online services:

E-commerce, Content Sharing, Social Networking, Forum ...



Apple Store 官方旗舰店 上海 >

Ad & Product Recommendation

Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:

• E-commerce, **Content Sharing**, Social Networking, Forum ...

You Tube Pinterest Instagram

Image & Video Recommendation

More like this

Search results of Pinterest

Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:

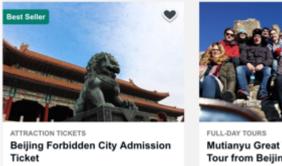
• E-commerce, Content Sharing, Social Networking, Forum ...

Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:

E-commerce, Content Sharing, Social Networking, Forum ...

Explore Beijing



97 reviews

S\$14

per adult

Book Now

Mutianyu Great Wall Small-Group Tour from Beijing including Lunch

S\$63 per adult

249 reviews
Book Now

Screenshot of TripAdvisor

Values of Recommender System (RecSys)

RecSys has become a major **monetization** tool for customeroriented online services:

• E-commerce, Content Sharing, Social Networking, Forum ...

Ad systems are technically supported by recommendation solutions:

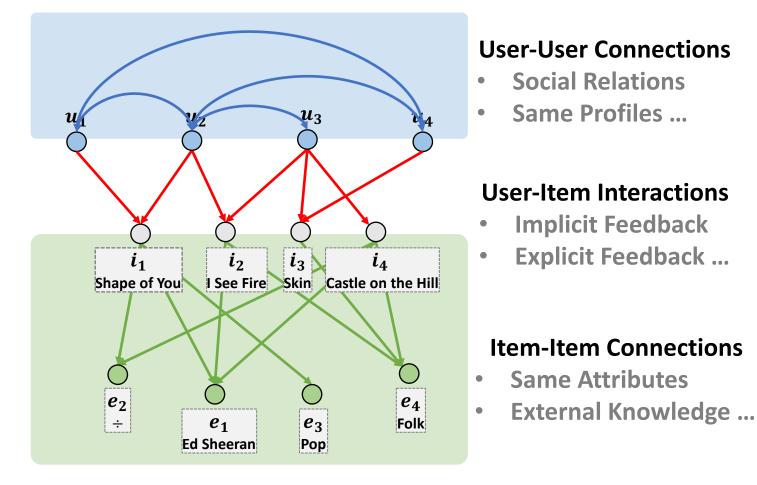
• The key is Click-Through Rate (CTR) prediction.

Some Statistics:

- YouTube Homepage: 60%+ clicks [Davidson et al. 2010]
- Netflix: 80%+ movie watches [Gomze-Uribe et al 2016]
- Amazon: 30%+ page views [Smith and Linden, 2017]

The Era of Connected World

The world is more **closely connected** than you might think!



OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
 - **Problem Formulation**
 - Unified View for Recommendation Paradigm
 - Limitations of Previous Works
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation

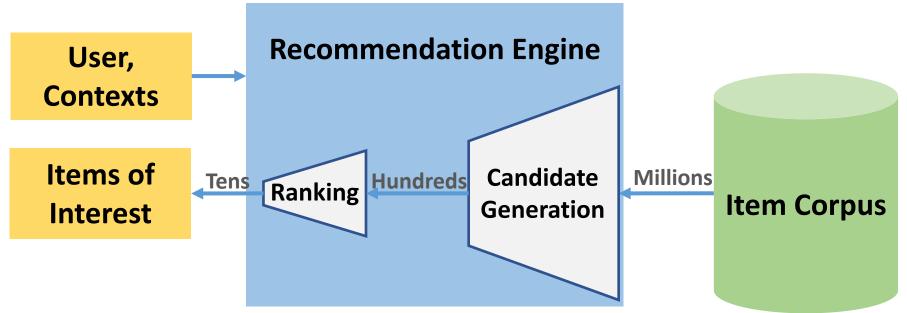
Slides in https://next-nus.github.io/

Overview of Recommendation Engine

User Interest is implicitly reflected in:

- Interaction history
- Demographics ...
- Contexts

Items can be: Products, News, Movies, Videos, Friends ...



Key challenge: user-item semantic gap

 user and item are two different types of entities and are represented by different features.

Problem Formulation

- **Input:** historical user-item interactions or additional side information (e.g., user profile, item profile)
- **Output**: given a target Item (e.g., movie, song, product), how likely a user would interact with it (e.g., click, view,

or purchase)

User Profile:

- User ID
- Rating history
- Age, Gender
- Clicks
- Income level

......

Item Profile:

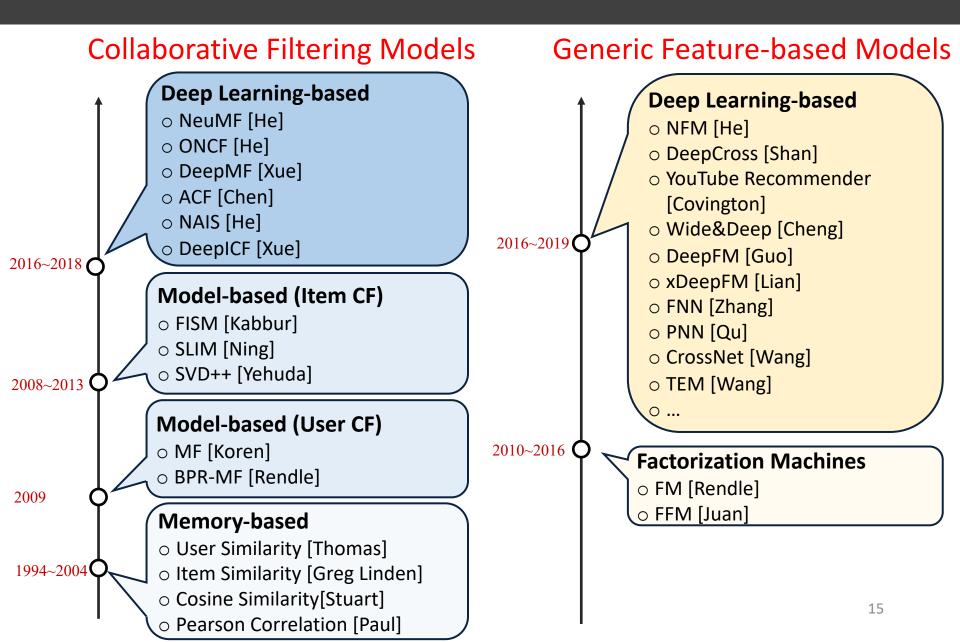
- Item ID
- Description
- Image
- Category

.....

- Price

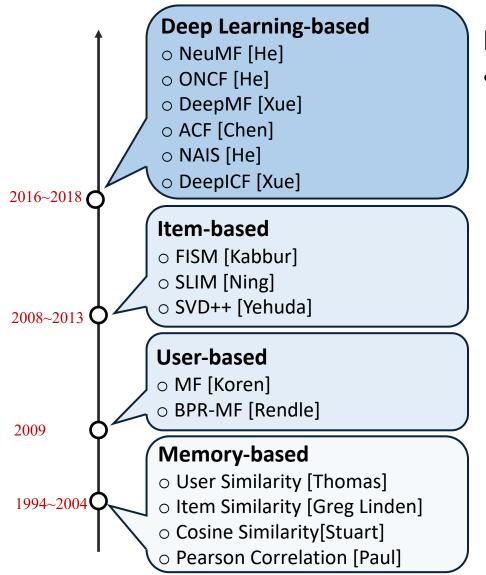
There may be no overlap between user features and item features.

Research on Prevalent RecSys



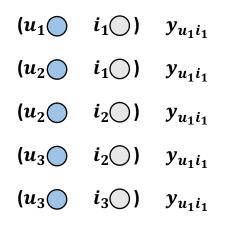
Research on Collaborative Filtering Models

Collaborative Filtering Models



Input Data:

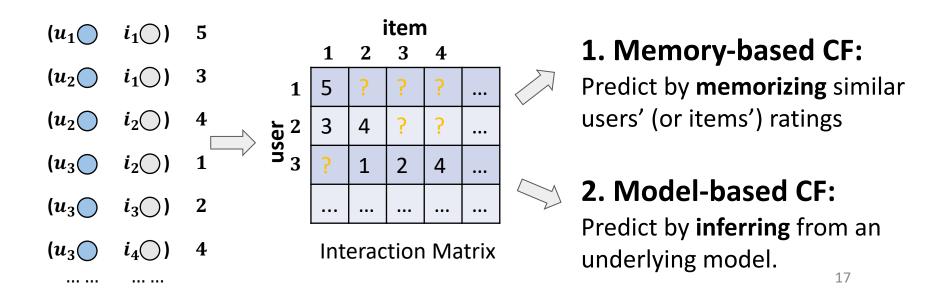
- User-Item Interaction Data
 - Explicit Feedback (e.g., rating)
 - Implicit Feedback (e.g., clicks)



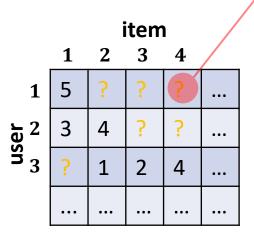
... ...

Collaborative Filtering (CF)

- **CF** is the most well-known technique for recommendation.
 - "CF makes predictions (*filtering*) about a user's interest by collecting preferences information from many users (*collaborating*)" ---Wikipedia
- Collaborative Signals → Behavior Similarity of Users
 - Similar users would have similar preference on items.



Memory-based CF



Interaction Matrix

Problem: predict user u's rating on item i.

User-based CF leverages the ratings of u's similar users on the target item i.

$$\hat{y}_{ui} = \sum_{\substack{u' \in S_u(u)}} sim(u, u') \cdot \underbrace{y_{u'i}}_{\text{Rating of a similar user on }i}$$

 Item-based CF leverages the ratings of u on other similar items of i.

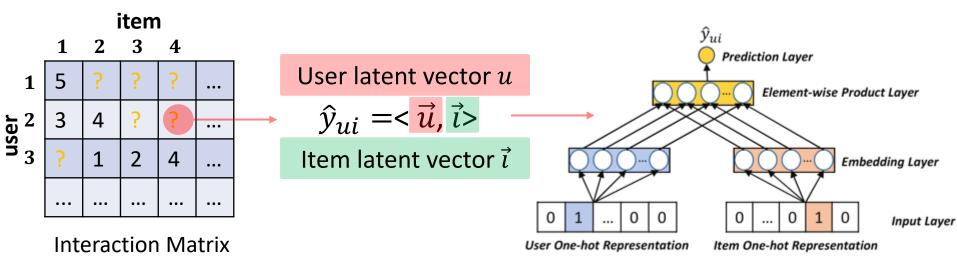
$$\hat{y}_{ui} = \sum_{\substack{i' \in S_i(i)}} sim(i, i') \cdot y_{ui'}$$
Rating of *u* on a similar item
Similar items of *i*

• Many similarity measures can be used, e.g., Jaccard, Cosine, Pearson Correlation. Recent advance learns the similarity from data. 18

Model-based CF

Matrix Factorization (MF) is the most popular and effective modelbased CF method.

- It represents a user and an item as a vector of latent factors.
- The score is estimated as the inner product of user latent vector and item latent vector.

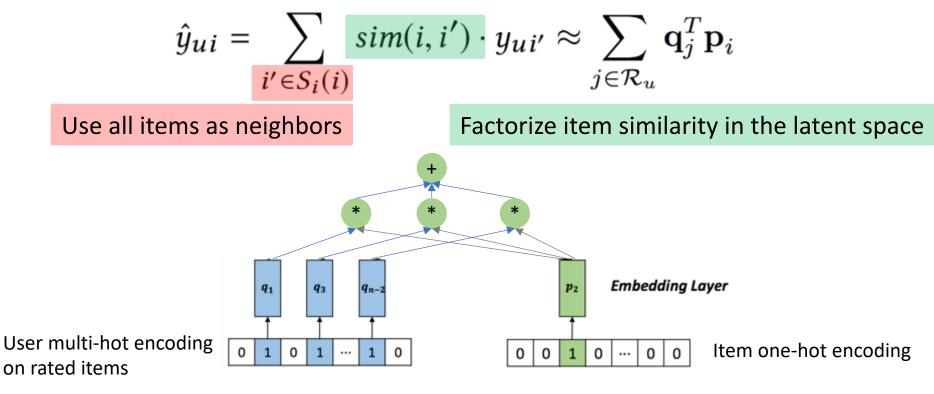


Optimizing a loss to minimize the prediction error on training data can get the latent vectors.

Item-based CF

Instead of only using an ID to encode a user, we can make the encoding more meaningful by using the user's rated items.

• This can be interpreted as an item-based CF model.



• E.g., FISM [Kabbur], SLIM [Ning]

Fusing User-based & Item-based CF

- MF (user-based CF) represents a user as her ID.
 - Directly projecting the ID into latent space
- FISM (item-based CF) represents a user as her interacted items.
 - Projecting interacted items into latent space
- SVD++ fuses the two types of models in the latent space:

$$\hat{y}_{ui} = (\mathbf{v}_u + \sum_{j \in \mathcal{R}_u} \mathbf{q}_j)^T \mathbf{p}_i$$

User representation in latent space

• This is the best single model for rating prediction in the Netflix challenge [Koren, KDD '08].

Two Widely-Used Loss

Pointwise loss \rightarrow e.g., log loss

- Cast the recommendation task as a classification problem
- Rating Prediction, CTR Prediction ...

$$\mathcal{L} = \sum_{(u, i, \mathbf{x}) \in O} -y_{ui} \log \sigma(\hat{y}_{ui}) - (1 - y_{ui}) \log (1 - \sigma(\hat{y}_{ui}))$$

Force the prediction scores to
be close to the target scores

Pairwise loss \rightarrow e.g., Bayesian Personalized Ranking (BPR) loss

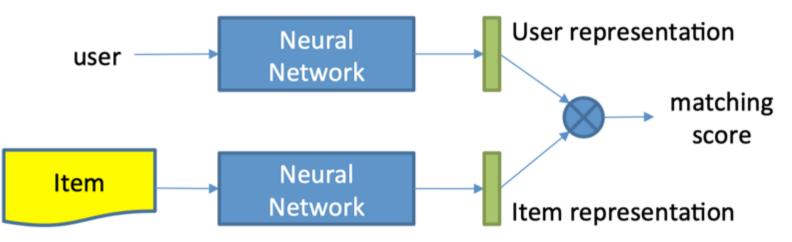
- Cast the recommendation task as a ranking problem
- Top-N Recommendation, Preference Ranking ...

$$Loss = \sum_{(u, i, j) \in O} -\ln \sigma \frac{(\hat{y}_{ui} - \hat{y}_{uj}) + \lambda \|\Theta\|_2^2}{\text{Relative order between observed & unobserved}}$$

interactions

Deep Learning Meets CF (1)

- Methods of representation learning
 - Enhance representation ability/expressiveness of models

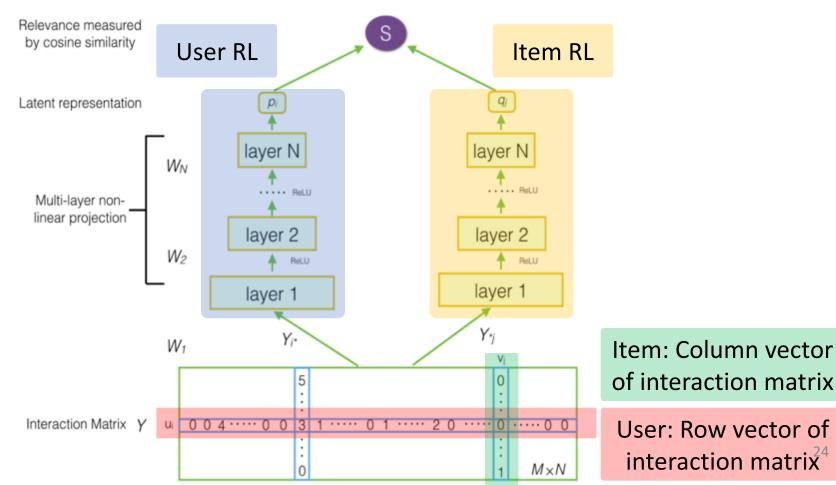


Model	Input Data	Representation Learning	Interaction Learning
DeepMF	User: Historical items	Multi-Layer	Inner product
[Xue, IJCAI'17]	Item: User group	Perceptron	
AutoRec	User: Historical items	Multi-Layer	Inner Product
[Sedhain, WWW'15]	Item: ID	Perceptron	
CDAE	User: Historical items + ID	Multi-Layer	Inner Product
[Wu, WSDM'16]	Item: ID	Perceptron	23

Deep Matrix Factorization (Xue, IJCAI'17)

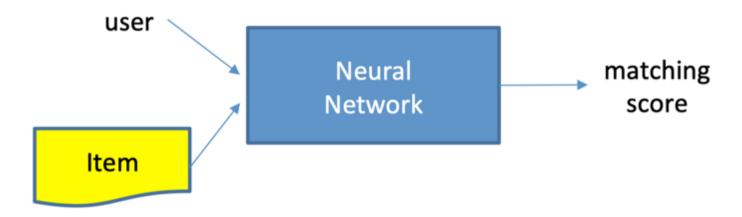
Representation Learning \rightarrow Multi-layer perceptron

 Deep Neural Networks are adopted to learn representations of users & items



Deep Learning Meets CF (2)

- Methods of interaction function learning
 - Capture complex patterns of user-item relationships

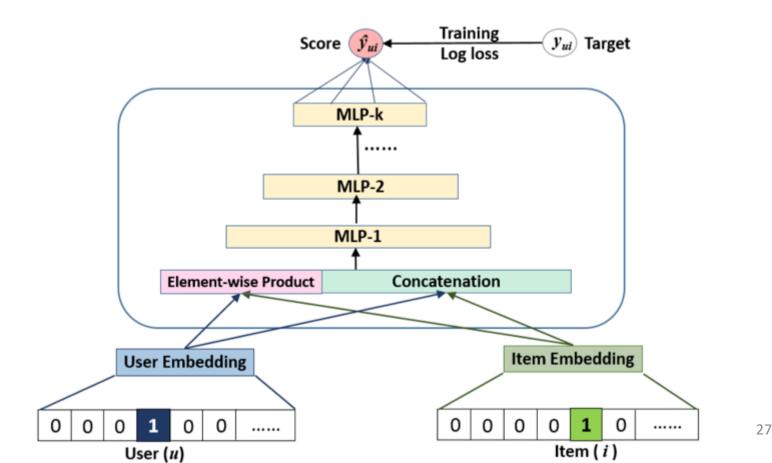


Model	Input Data	Representation Learning	Interaction Learning
NCF	User: ID	ID embedding	Multi-Layer
[He, WWW'17]	Item: ID		Perceptron
NNCF	User: User neighbors	Embeddings	Multi-Layer
[Bai, CIKM'17]	Item: Item neighbors		Perceptron
ONCF	User: ID	ID embedding	Convolutional
[He, IJCAI'28]	Item: ID		Neural Network

Neural Matrix Factorization (He, WWW'17)

Interaction Modeling \rightarrow MF + MLP over users and items

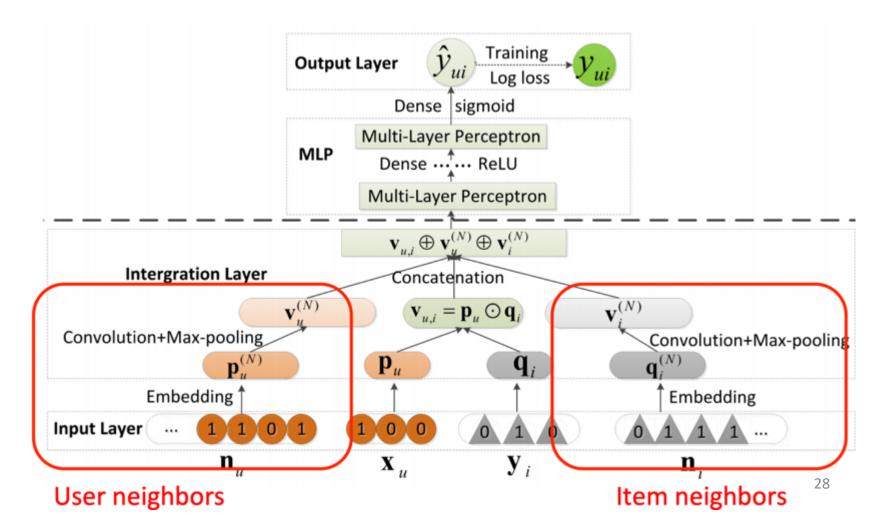
- MF uses inner product to capture the low-rank relation
- MLP is more flexible in using DNN to learn the matching function.



NNCF: Neighbor-based NCF (Bai, CIKM'17)

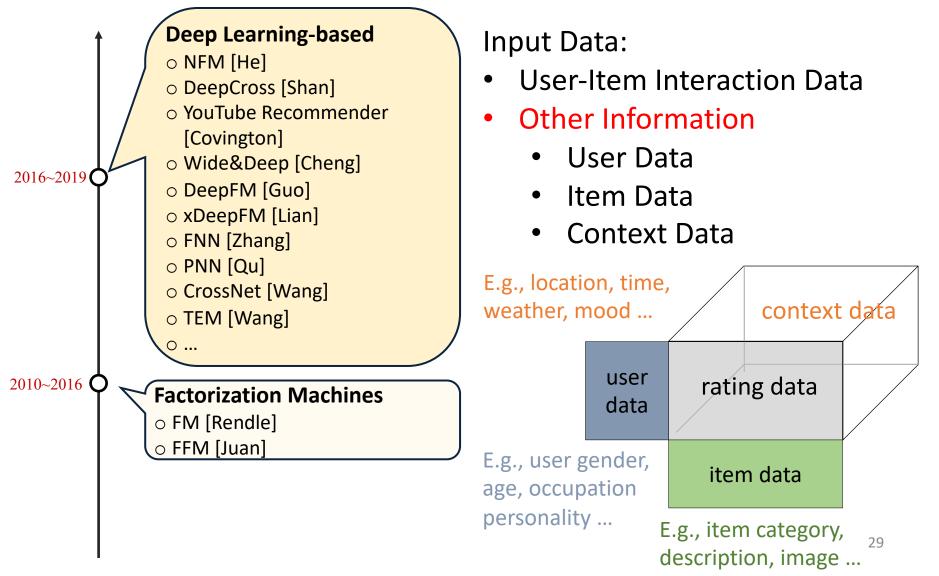
Interaction Modeling \rightarrow MF + MLP over user and item neighbors

• Feeding user and item neighbors into the NCF framework

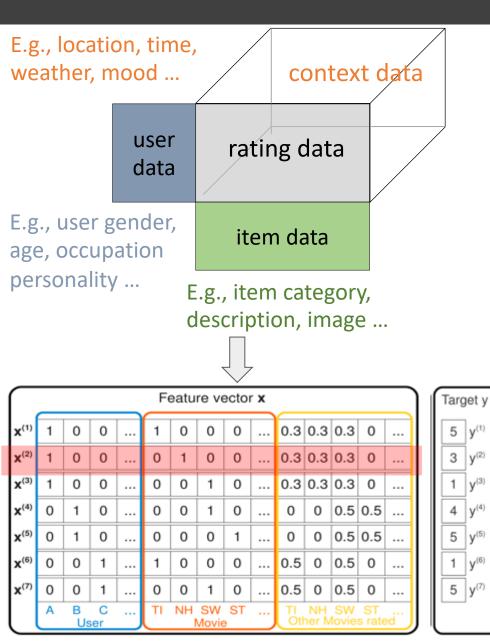


Research on Feature-based Models

Generic Feature-based Models



Feature-based Models



Raw Features:

- Categorical Features:
 - One-hot encoding on ID features
- Continuous Features:
 - E.g., time, frequency. Need feature normalization

- Categorical Features:
 - Cross Features are important (e.g., AND(A=True, B=True))
- Continuous Features:
 - E.g., outputs of other models
 like visual embeddings. 30

Factorization Machine (FM)

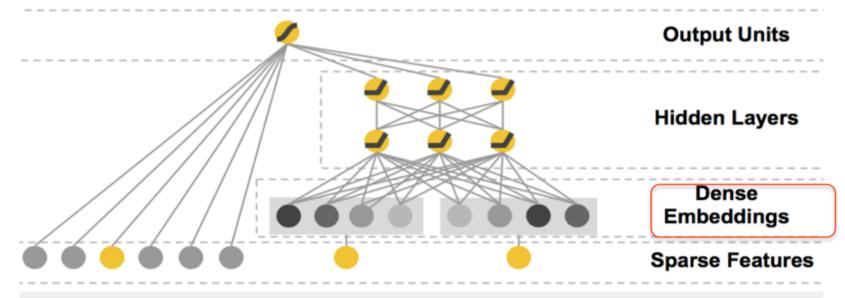
- FM is inspired from previous factorization models
- It represents each feature as a latent vector (embedding), and models the second-order feature interactions:

$$\hat{y}(\mathbf{x}) = \mathbf{w}_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j>i}^p \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

First-order:
Linear Regression
Second-order:
Pair-wise interactions between features

- FM allows easy feature engineering for recommendation, and can mimic many existing models (that are designed for a specific task) by inputting different features.
 - E.g., MF, SVD++, timeSVD [Koren, KDD'09], PIFT [Rendle, WSDM'10] etc.

Wide&Deep (Cheng et al, RecSys'16)

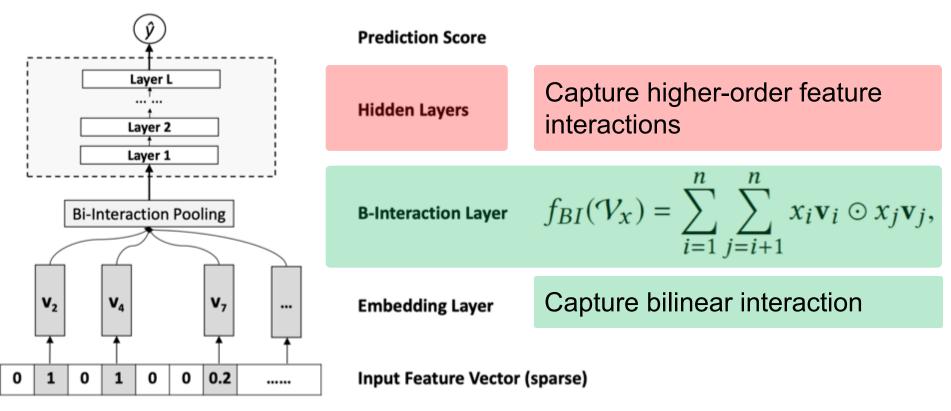


Wide & Deep Models

- The wide part is linear regression for memorizing seen feature interactions, which requires careful engineering on cross features.
 - E.g., AND(gender=female, language=en) is 1 if both single features are 1
- The deep part is DNN for generalizing to unseen feature interactions.
 - Cross feature effects are captured in an implicit way.

Neural Factorization Machine (He et al, SIGIR'17)

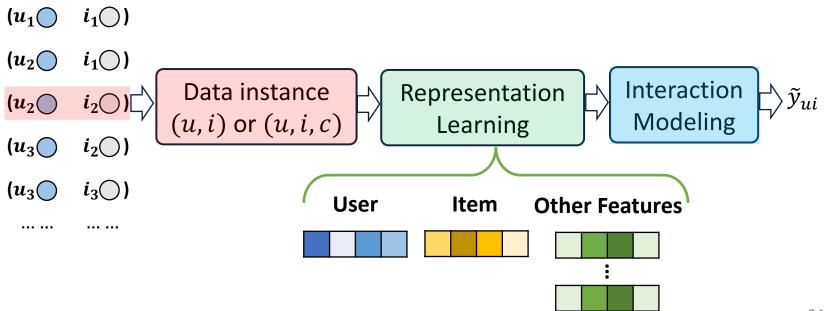
• Inspired by FM, NFM models pairwise interactions between feature embeddings with multiplication.



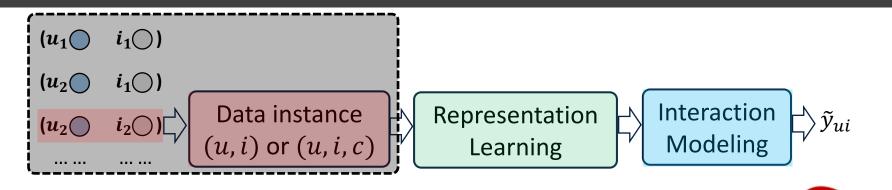
A General Paradigm

Transform each observation, a user-item pair (u, i) or with side information (u, i, c), into a separate data instance

- Initiate representations for each feature \rightarrow Representation Learning
 - Design whatever features as you want
- Perform predictions based on interactions → Interaction Modeling
 - Design whatever networks as you like

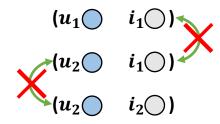


Information Isolated Island Issue (1)



Treating each observation as an independent instance

Forgoing relationships among instances



User-Item Interactions

- Behavior similarity among users
- Audience similarity among items

User-Item Interactions + Social Ties

 i_1

 $(u_1 \bigcirc$

 $(u_2 \bigcirc$

 (u_2)

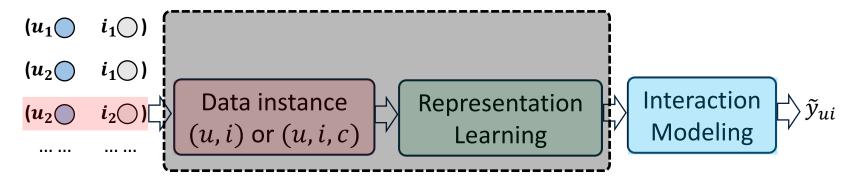
Shared friends as bridge among users
 → mouth marketing

 $u_3 \bigcirc u_4$

 u_3 (

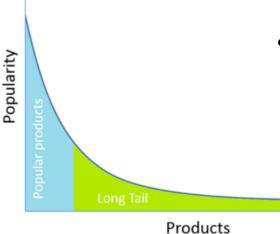
U2

Information Isolated Island Issue (2)



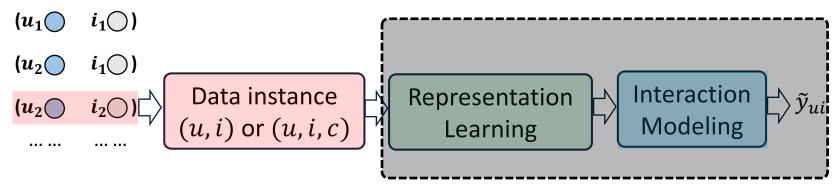
Treating each observation as an independent instance

- Limited Representation Ability
 - Instance representation is dependent on its own features merely
 - SVD++, NAIS: CF with neighbors as input are more expressive



- Suffer from sparsity issue
 - inactive users, unpopular items, infrequent features → insufficient information to
 learn optimal representation

Information Isolated Island Issue (3)



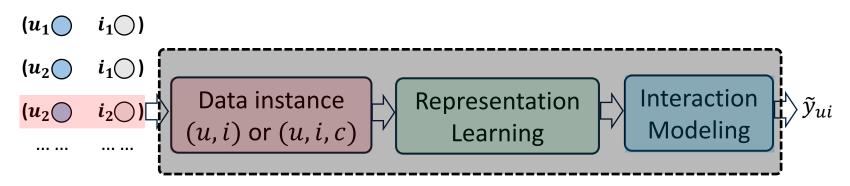
Treating each observation as an independent instance

• Suboptimal Model Capacity

 Suboptimal representations lead to unsatisfactory interaction model, especially for unseen (user-item or feature) interactions



Information Isolated Island Issue (4)



Treating each observation as an independent instance

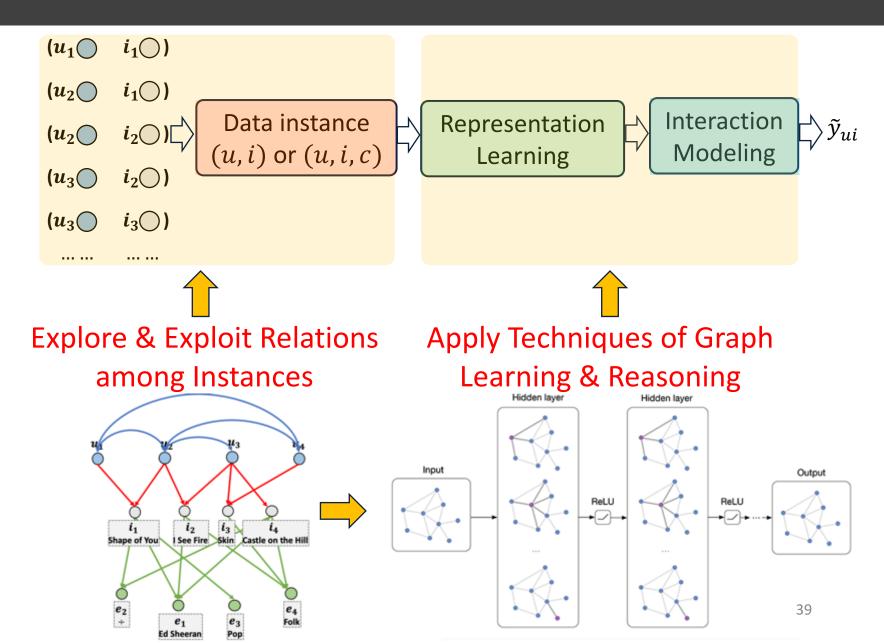
- Components work as a black-box
 - hardly exhibit the reasons behind a recommendation
 - Make the decision-making process opaque to understand

Why i_1 is recommended to u_1 ? Which

 $(u_1 \bigcirc i_1 \bigcirc)$ one is more important?

- Collaborative Signals?
- Mouth Marketing?
- Item Knowledge?

How to Solve Such Issue?



References

- Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing
- Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.
- Stuart James Fitz-Gerald and Bob Wiggins. Introduction to modern information retrieval, 3rd ed., C.G. chowdhury. facit publishing, london (2010). Int J. Information Management, 30(6):573–574, 2010
- Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens: An open architecture for collaborative filtering of netnews. In CSCW, pages 175–186, 1994.
- Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, no. 8, pp. 3037, 2009.
- S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, "Bpr: Bayesian personalized ranking from implicit feedback," in Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, ser. UAI '09, 2009, pp. 452–461.
- S. Kabbur, X. Ning, and G. Karypis, "FISM: factored item similarity models for top-n recommender systems," in The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, 2013, pp. 659–667.
- Xia Ning, George Karypis: SLIM: Sparse Linear Methods for Top-N Recommender Systems. ICDM 2011: 497-506
- Yehuda Koren: Factorization meets the neighborhood: a multifaceted collaborative filtering model. KDD 2008: 426-434
- S. Rendle, "Factorization machines," in IEEE 10th International Conference on Data Mining, 2010, pp. 995–1000.
- Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, Chih-Jen Lin: Field-aware Factorization Machines for CTR Prediction. RecSys 2016: 43-50
- X., X. Du, X. Wang, F. Tian, J. Tang, and T. Chua, "Outer product-based neural collaborative filtering," in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp. 2227–2233.
- H.-J. Xue, X.-Y. Dai, J. Zhang, S. Huang, and J. Chen, "Deep matrix factorization models for recommender systems," in Proceedings of the 26th International Joint Conference on Artificial Intelligence, ser. IJCAI '17, 2017, pp. 3203–3209.
- X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural collaborative filtering," in Proceedings of the 26th International Conference on World Wide Web, ser. WWW '17, 2017, pp. 173–182.

References

- J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S. Chua, "Attentive collaborative filtering: Multimedia recommendation with item- and component-level attention," SIGIR '17, 2017
- X. He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, and T.-S. Chua, "Nais: Neural attentive item similarity model for recommendation," TKDE, 2018.
- F. Xue, X. He, X. Wang, J. Xu, K. Liu, and R. Hong, "Deep itembased collaborative filtering for top-n recommendation," TOIS, vol. 37, no. 3, p. 33, 2019.
- H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., "Wide & deep learning for recommender systems," DLRS '16, 2016, pp. 7–10.
- H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, "Deepfm: A factorization-machine based neural network for CTR prediction," IJCAI, 2017, pp. 1725–1731.
- J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, "xdeepfm: Combining explicit and implicit feature interactions for recommender systems," KDD, 2018, pp. 1754–1763.
- Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, "Deep crossing: Web-scale modeling without manually crafted combinatorial features," KDD pp. 255–262.
- P. Covington, J. Adams, and E. Sargin, "Deep neural networks for youtube recommendations," RecSys '16, 2016, pp. 191–198.
- X. Wang, X. He, F. Feng, L. Nie, and T.-S. Chua, "Tem: Treeenhanced embedding model for explainable recommendation," WWW, 2018, pp. 1543–1552.
- R. Wang, B. Fu, G. Fu, and M. Wang, "Deep & cross network for ad click predictions," in Proceedings of the ADKDD'17, ser. ADKDD'17, 2017, pp. 12:1–12:7.
- Weinan Zhang, Tianming Du, Jun Wang: Deep Learning over Multi-field Categorical Data - A Case Study on User Response Prediction. ECIR 2016: 45-57
- Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, Jun Wang: Product-Based Neural Networks for User Response Prediction. ICDM 2016: 1149-1154

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
 - Random Walk
 - Absorption, ItemRank, TriRank, Pixie, RecWalk
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation

Random Walk

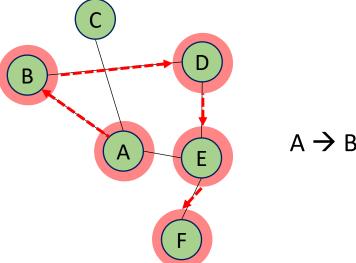
Graph Data G:

- *V* is the vertex set
- $E = V \times V$ is the edge set

$$p_{ij} = \mathbb{P}(v_{k+1} = j | v_k = i) = \begin{cases} \frac{1}{|N_i|}, & \text{if } (i,j) \in E\\ 0, & \text{otherwise} \end{cases}$$

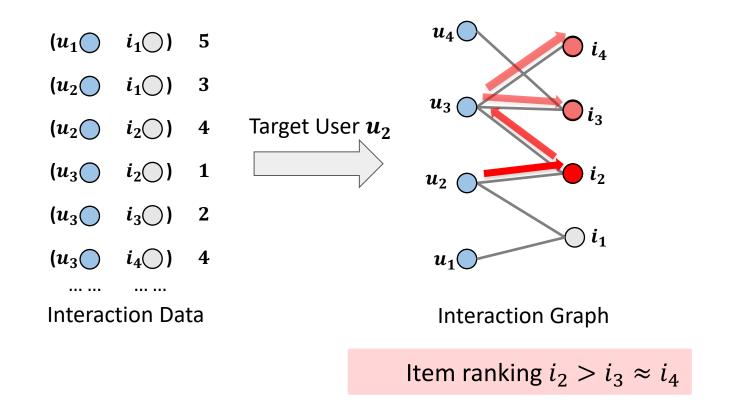
Random Walk → exhibit high-order proximity among nodes

- 1. Given an initial vertex (node) v_0 , select randomly an adjacent node v_1 ;
- 2. Move to this neighbor v_1 and treat v_1 as the starting node;
- 3. Repeat Steps 1& 2.



$A \rightarrow B \rightarrow D \rightarrow E \rightarrow F$

Motivation — Preference Propagation



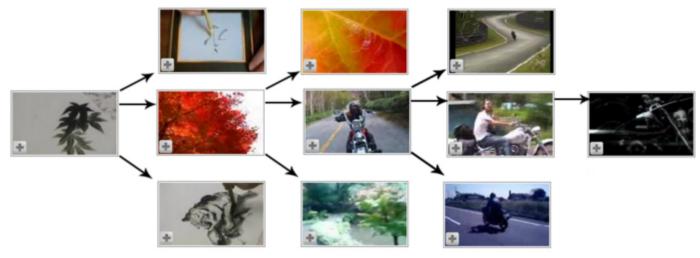
High-order Proximity \rightarrow Label Propagation \rightarrow Preference Distribution

 Label (preference) propagation from the target user's historical item nodes assigns unseen items with expected labels.

Absorption: Random Walk Through View Graph

Absorption from [Baluja et al, WWW'2008]:

- Interactions → item-item co-viewed graph or user-item graph
 - Edges \rightarrow two video items are often co-viewed



Take a starting node v for a random walk & output a label distribution

$$\frac{L_v(\ell)}{L_v(\ell)} = \sum \sum N_v(u) N_u(w) L_w(\ell)$$

The probability of reaching $oldsymbol{u}$ from $oldsymbol{v}$ in one random walk step

The probability of picking a neighbor w of u

Bakuja et al, Video Suggestion and Discovery for YouTube: Taking Random Walks Through the View Ggaph. WWW'2008:

ItemRank: A Random-Walk Scoring Algorithm

ItemRank from [Gori et al, IJCAI'2007]:

- Interactions → item-item correlation graph
 - Edges \rightarrow the shared user groups
- Inspired by Classic PageRank [Kamvar et al., 2003a]:

$$\begin{array}{l} \mbox{mportance score} \\ \hline \mbox{for every node} \end{array} \ \mathbf{PR} = \alpha \cdot \mathbf{C} \cdot \mathbf{PR} + (1 - \alpha) \cdot \frac{1}{|\mathcal{V}|} \cdot \mathbf{1}_{|\mathcal{V}|} \\ \mbox{Normalized connectivity} \\ \mbox{matrix for graph} \end{array} \ \begin{array}{l} \mbox{Restart} \end{array} \ \begin{array}{l} \mbox{Restart} \end{array} \ \end{array}$$

ItemRank

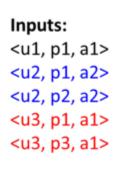
Preference score
for an item node
& user profile
$$\mathbf{IR}_{u_i} = \alpha \cdot \mathcal{C} \cdot \mathbf{IR}_{u_i} + (1 - \alpha) \cdot \mathbf{d}_{u_i}$$
User preference recorded
in training set \rightarrow bias

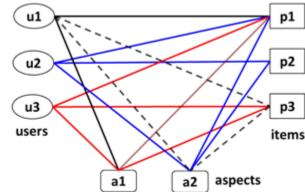
⁴⁶ Gori et al, ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines. IJCAI'2017

TriRank: Ranking over Tripartite Graph

TriRank from [He et al, CIKM'2015]:

- User-Item Interactions + Item Aspects → Tripartite Graph
 - User u previously rated item p with mentioning aspect a
- Ranking score for all nodes of a node
 - User-User \rightarrow user similarity;
 - User-Aspect \rightarrow interests on aspects
 - User-Item \rightarrow preference on items





Smoothness Constrain

$$Q_{UP}(f) = \sum_{i=1}^{|U|} \sum_{j=1}^{|P|} r_{ij} (rac{f(u_i)}{\sqrt{d_i^u}} - rac{f(p_j)}{\sqrt{d_j^p}})^2$$

Local consistency → ranking scores of nearby nodes should not vary too much

Fitting Constrain $Q_P(f) = \sum_{j=1}^{|P|} (f(p_j) - p_j^0)^2$

Ranking scores should adhere to the observations (i.e., initial values).

Pixie Random Walk

Pixie from [Eksombatchai et al, WWW'2018]:

- Undirected Pin-Board Graph
 - An edge between a pin p and a board b if a user saved p to b
- **Input**: a user-specific input query pin *q*
- Output: relevant pin p

Basic Random Walk:

- Simulate many random walks on *G*, starting from *q*
- record visit count for each candidate pin p
- The more often p is visited \rightarrow More related it is to q

Pixie Random Walk:

- Bias the random walk towards user-specific pins (q, U) → personalized results for even the same query set
- Perform queries based on multiple pins $(q \in Q, U)$ each with a different importance \rightarrow consider the history of users

Eksombatchai et al, Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Reaश्वाme. WWW'2018

More like this

RecWalk: Nearly Uncoupled Random Walks

RecWalk from [Nikolakopoulos et al, WSDM'2019]:

Interactions → User-Item Bipartite Graph

Adjacency matrix
$$\mathbf{A}_{\mathcal{G}} \triangleq \begin{pmatrix} \mathbf{0} & \mathbf{R} \\ \mathbf{R}^{\mathsf{T}} & \mathbf{0} \end{pmatrix}$$
 Interaction matrix

Transition probability matrix to govern the random sampler

$$\mathbf{P} \triangleq \alpha \mathbf{H} + (1 - \alpha) \mathbf{M}$$

1. One based on bipartite graph

$$\mathbf{H} \triangleq \mathrm{Diag}(\mathbf{A}_{\mathcal{G}}\mathbf{1})^{-1}\mathbf{A}_{\mathcal{G}}.$$

2. The other designed to capture item relations

$$\mathbf{M} \triangleq \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathcal{I}} \end{pmatrix}$$

 $\pi_u^{\mathsf{T}} \triangleq \mathbf{e}_u^{\mathsf{T}} \mathbf{P}^K$

Recommendation Strategies

• the probability the random walker lands on nodes after steps.

Nikolakopoulos et al, RecWalk: Nearly Uncoupled Random Walks for Top-N Recommendation. WSDM'2019

Summary: Random Walk for Recommendation

	Graph Data	Random Walk
Absorption	Item-item co-viewed graph	Basic
ItemRank	Item-item correlation graph	User-specific transition probability
TriRank	User-item- <mark>aspect</mark> tripartite graph	Smoothness & fitting constrains
Pixie	Pin-board graph	User-specific multi-pin transition probability
RecWalk	User-item bipartite graph	Basic + item relation-guided transition probability

Limitations

- Efficiency Issue:
 - for every user, generate ranking scores on all items each step \rightarrow hard to apply large-scale graphs

Lack model parameters to optimize recommendation objective

• heuristic-based, rather than learning-based paradigm

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
 - Network Embedding
 - HPE, HOP-Rec, CES
- Part III: Graph Neural Networks for Recommendation

Slides in https://next-nus.github.io/

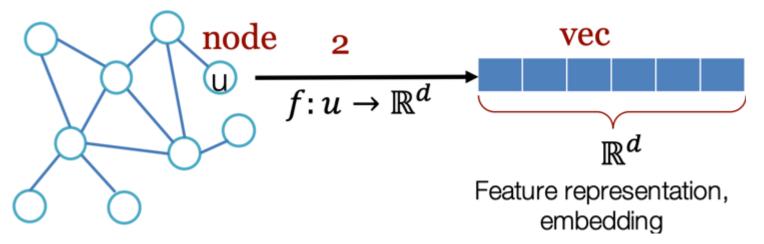
Network Embedding

Also well known as graph representation learning, node embedding, graph embedding.

Input: graph Data G

- V is the vertex set
- $E = V \times V$ is the edge set

Output: $Z \in \mathbb{R}^{|V| \times d}$ latent feature representation matrix



Snips from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

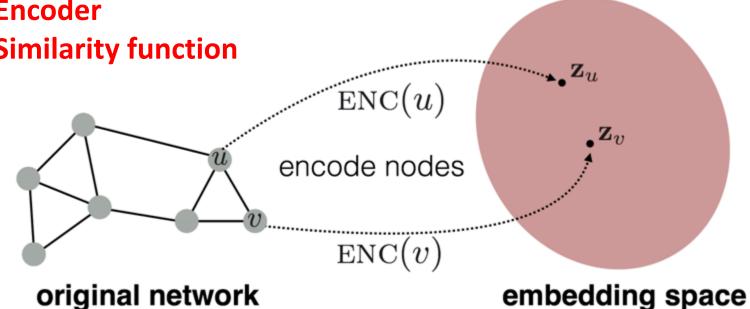
Intuition

Goal:

- Find embedding of nodes to *d*-dimensions
- Similarity in the embedding space approximates similarity in the original network

Need to define:

- Encoder
- **Similarity function**



Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

Two Main Components

• Encoder

• To embed each node to a low-dimension vector representation

 $ENC(v) = z_v$ Node in input graph

- Similarity Function
 - To specify how relationships in the embedding space map to relationships in the original network.

similarity(v, u) = $z_u^T z_v$

Similarity in the original network

- Are connected?
- Share neighbors?
- Have similar structural roles?

Similarity in the embedding space

Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

One- & Multi-hop Similarity

Similarity Function

- the edge weight between v and u in the original network.
- **One-hop Similarity** → Adjacency Similarity
 - e.g., [Ahmed et al. WWW'2013]

$$\mathcal{L} = \sum_{(u,v)\in E\times E} ||z_u^{\mathrm{T}} z_v - A_{uv}||^2$$

All node pairs

(Weighted) adjacency matrix for input graph

- Only consider the existence of direct connections
- Multi-hop Similarity → overlap between node multi-hop neighbors
 - e.g., [Cao et al. CIKM'2015], [Ou et al. KDD'2016]

$$\mathcal{L} = \sum_{(u,v)\in E\times E} ||z_u^{\mathrm{T}} z_v - S_{uv}||^2$$

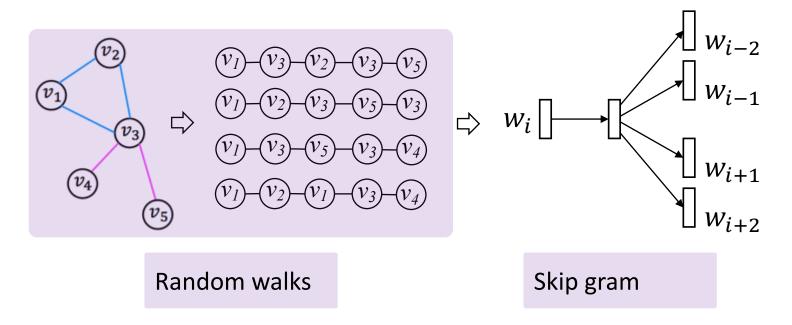
Neighborhood overlap between nodes

Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

Random Walk-based Similarity

Similarity Function

- **Probability that** u and v co-occur on a random walk over the graph
- E.g., DeepWalk, node2vec ...

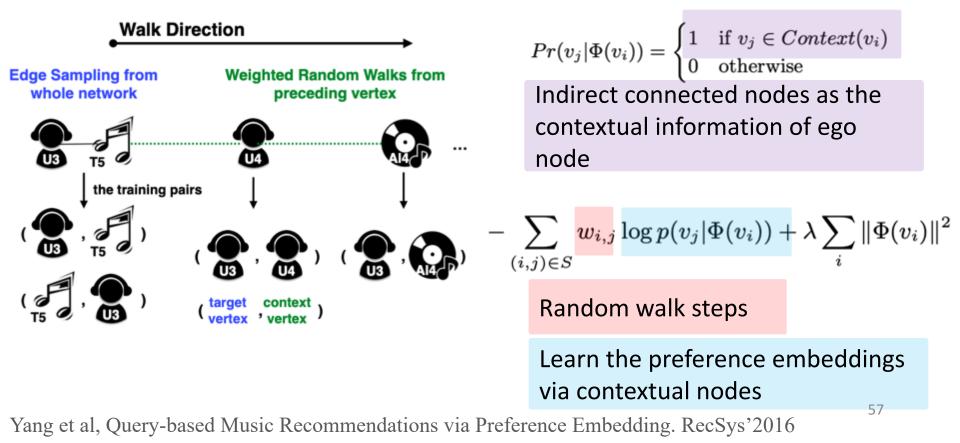


Slides from: <u>Jure Leskovec</u> et al. Representation Learning on Networks, Tutorial@WWW2018 Slide from: Tang Jie et al. Representation Learning on Networks, Tutorial@WWW2019

Heterogeneous Preference Embedding (HPE)

HPE from [Yang et al, RecSys'2016]

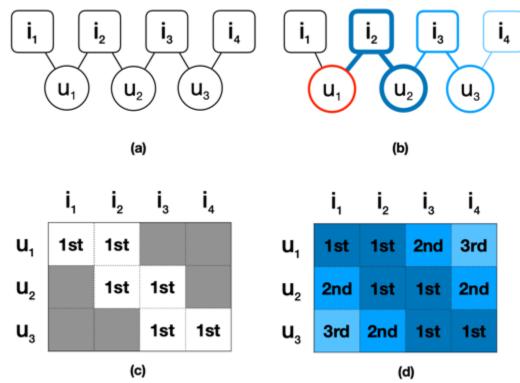
- Interactions + Side information → heterogeneous graph
- Random walk similarity
 - treat indirect user-item interactions as user context



HOP-Rec: High-Order Proximity for Recommendation

HOP-Rec from [Yang et al, RecSys'2018]

- Interactions → user-item bipartite graph
- Random walk similarity
 - In a path, nodes with different orders \rightarrow different confidence
 - Involve indirect user-item interactions into user preference



Yang et al, HOP-Rec: High-Order Proximity for Implicit Recommendation. RecSys'2018

HOP-Rec: High-Order Proximity for Recommendation

HOP-Rec from [Yang et al, RecSys'2018]

$$\mathcal{L}_{HOP} = \sum_{\substack{1 \le k \le K \\ u, (i, i')}} \underbrace{\mathcal{C}(k) \mathbb{E}_{i \sim P_u^k}}_{i' \sim P_N} \underbrace{\mathcal{F}\left(\theta_u^{\mathsf{T}} \theta_{i'}, \theta_u^{\mathsf{T}} \theta_i\right)\right]}_{\left[\mathcal{F}\left(\theta_u^{\mathsf{T}} \theta_{i'}, \theta_u^{\mathsf{T}} \theta_i\right)\right]} + \lambda_{\Theta} \|\Theta\|_2^2$$

A random walk with a decay factor for **confidence weighting** C(k)

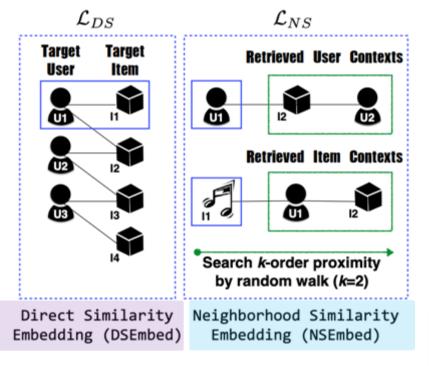
 For a given walk sequence, item with order k that the user potential prefers → treated as positive instances Matrix Factorization with BPR loss

 Random walk enriches the positive observations

Collaborative Similarity Embedding (CES)

CES from [Chen et al, WWW'2019]

• Interactions \rightarrow user-item bipartite graph



$$\arg \max_{\Phi} \sum_{(v_i, v_j) \in E} \log p(v_i, v_j | \Phi)$$

Maximize the likelihood of observed pairs

$$\begin{array}{l} \arg \max_{\Phi, \Phi^{UC}, \Phi^{IC}} & \prod_{(v_i, v_j) \in S_U} p(v_j | v_i; \Phi; \Phi^{UC}) \\ &+ \prod_{(v_i, v_j) \in S_I} p(v_j | v_i; \Phi; \Phi^{IC}) \end{array}$$

- Conduct k-step random walk
- Get neighborhoods of a user (or item) pair
- Neighborhood proximity → user (or item) similarity

Summary: Network Embedding for Recommendation

	Graph Data	Connectivity/Proximity
HPE	Heterogeneous graph	Indirect connections
HOP-Rec	User-item bipartite graph	Direct connectionsIndirect connections
CES	User-item bipartite graph	 Direct similarity Neighborhood proximity similarity

Limitations

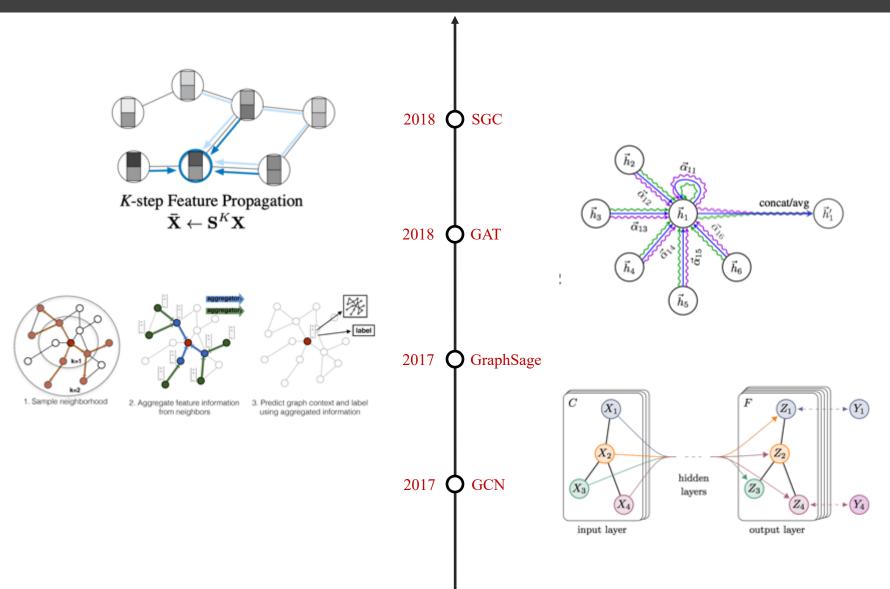
- Not end-to-end Learning:
 - Random walk is conducted first to get multi-hop neighbors
- Not fully explore high-order connectivity
 - Multi-hop neighbors are used to enrich the training data, rather than directly contributing to the representation learning

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation
 - Graph Neural Networks

Slides in https://next-nus.github.io/

Recent Graph Neural Network (GNN) Research

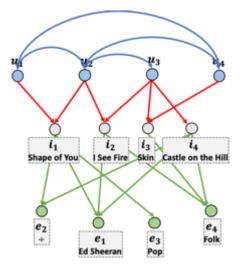


Graph Data G

- V is the vertex set
- $E = V \times V$ is the edge set
 - Undirected: social relations, user-item interactions ...
 - Directed: triplets in knowledge graph
- $A \in \mathbb{R}^{|V| \times |V|}$ is the adjacency matrix

• $A_{i,j} = \begin{cases} a_{i,j} > 0 \ (i,j) \in E \\ 0 \ (i,j) \notin E \end{cases}$

- $X \in \mathbb{R}^{d \times |V|}$ is a matrix of node features
 - Categorical attributes, text, image data
 - Node degrees, clustering coefficient, ...
 - Indicator vectors (i.e., one-hot encoding of each node)
- $X' \in \mathbb{R}^{d' \times |E|}$ is a matrix of edge features
 - Relations



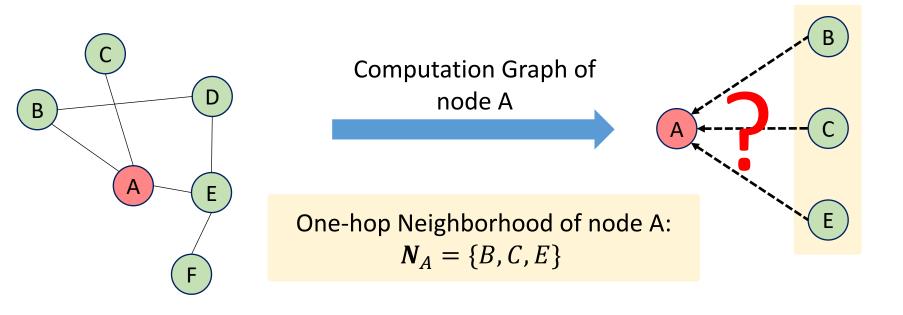
Graph Convolution Network (GCN)

- At the core of GCN
 - 1. Model a local structural information (neighborhood) of a node as the receptive field
 - 2. Apply the graph convolution operation
 - Spectral domain:
 - Laplacian eigen-decomposition [Bruna et al. ICLR'2014]
 - Chebyshev polynomials [Defferrard et al, NeurIPS'2016]
 - However, computationally expensive
 - Spatial domain:
 - Node (Neighborhood) aggregation [William et al, NeurIPS'2017]
 - 3. Update its representation.
 - $Z \in \mathbb{R}^{d \times |V|}$ latent feature representation matrix

Neighborhood Aggregation (1)

Key Idea:

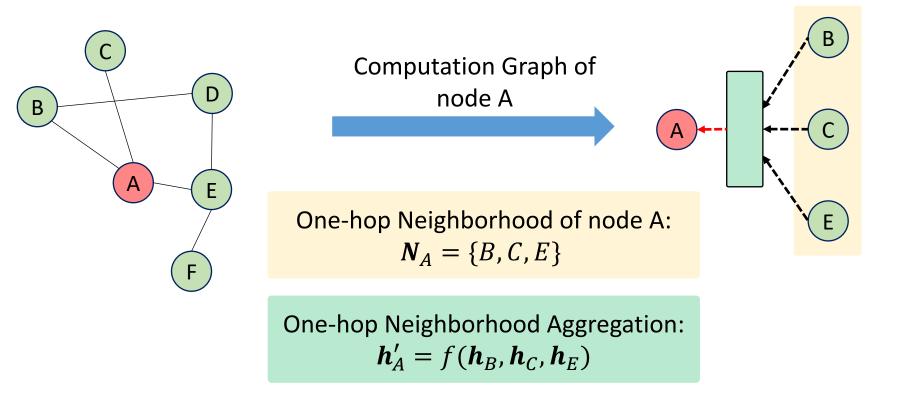
- Generate node embeddings based on local neighbors
- Neighborhood defines a computation graph.



Neighborhood Aggregation (2)

Message Passing/Information Propagation:

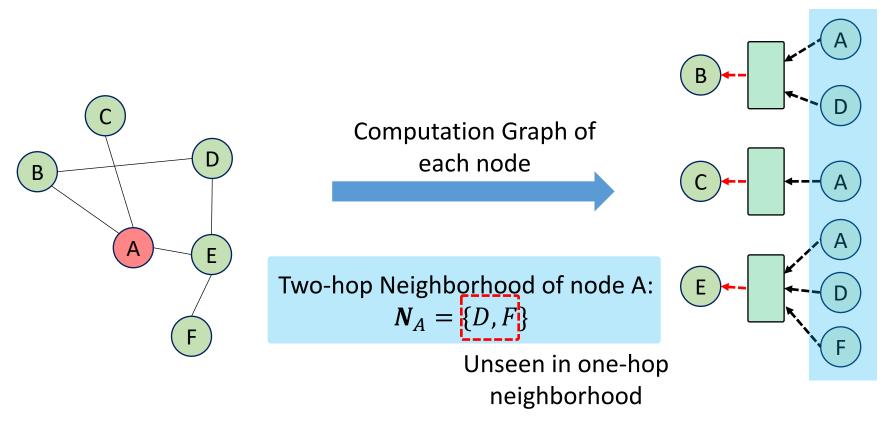
 A node aggregates information from their neighbors via neural networks



Neighborhood Aggregation (3)

Moreover:

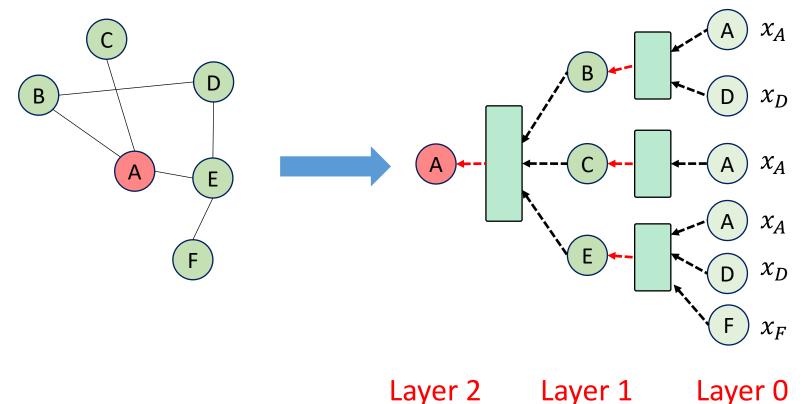
Every neighboring node has its won computation graph!



Neighborhood Aggregation (4)

Stacking more neighborhood aggregation layers

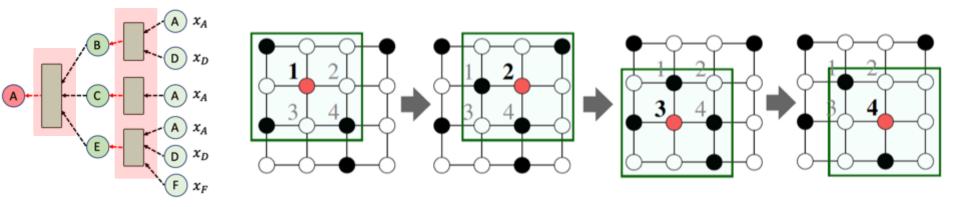
- Nodes have embeddings at each layer
- Model can be arbitrary depth
- At Layer 0, embedding of node $v \in V$ is its input feature, i.e., x_v .



Slide from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

Graph Convolution

Neighborhood aggregation can be viewed as a center-surround filter in convolutional neural network (CNN).



Mathematically related to **spectral graph convolutions** (Bronstein et al., 2017)

Now

- How to aggregate information across layers!
- i.e., how to design the neural networks!

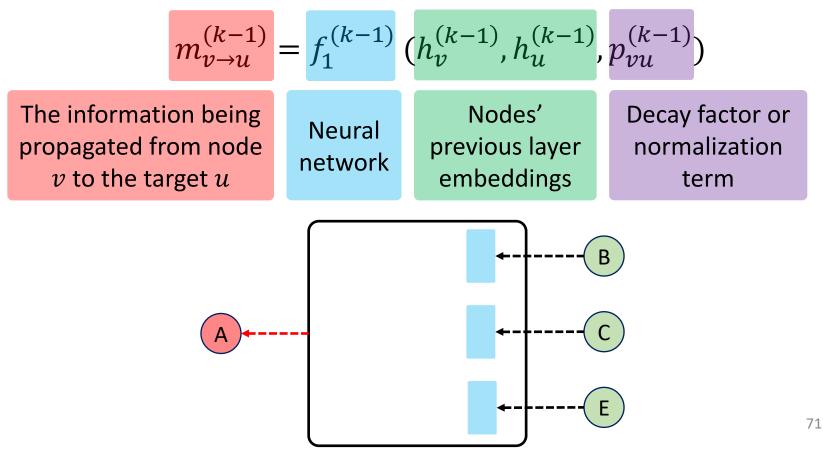
Slide from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

Component 1: Information Construction

Generally speaking, the first main component:

1. Information Construction

Construct the information being propagated from one neighboring node to the target node.

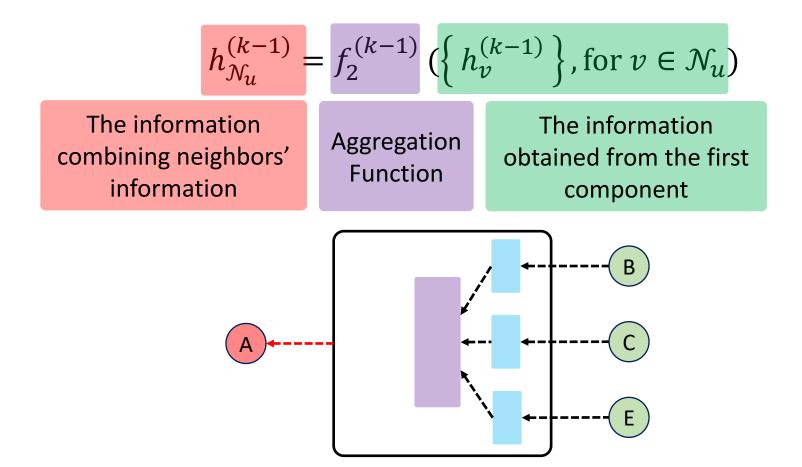


Component 2: Neighborhood Aggregation

Generally speaking, the second main component:

2. Neighborhood Aggregation

Aggregate the information from the whole neighborhood.

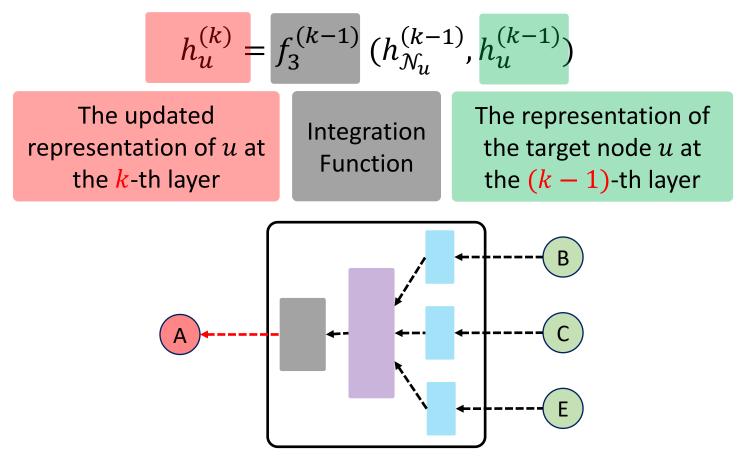


Component 3: Representation Update

Generally speaking, the third main component:

3. Representation Update

Integrate the neighborhood information with its own representation.



Graph Convolutional Network (GCN)

GCN from [Kipf et al., ICLR'2017]:

Nonlinear activation function

$$h_u^{(k)} = \sigma \left(W_k \sum_{v \in \mathcal{N}_u \cup u} \frac{h_v^{(k-1)}}{\sqrt{|\mathcal{N}_u||\mathcal{N}_v|}} \right)$$

The same neural network for self and neighbor embeddings in Comp.3

• More parameter sharing

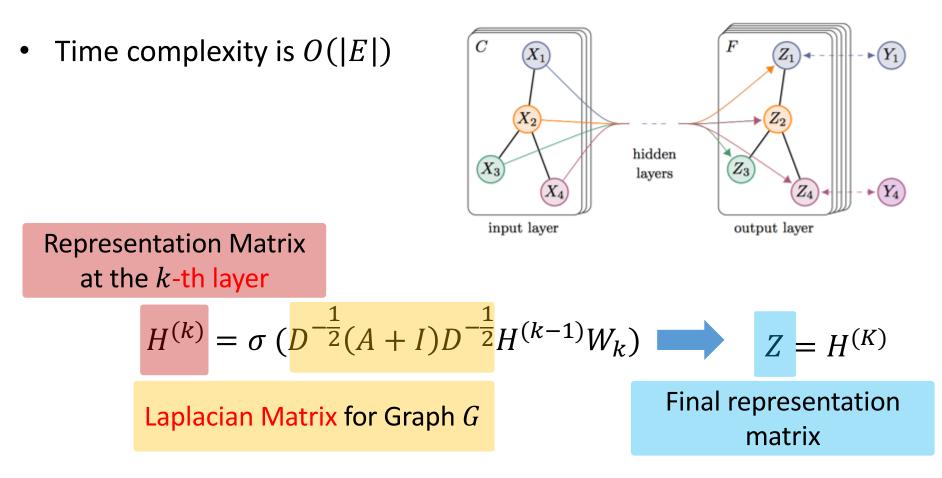
Weighted sum: Aggregation in Comp. 2 per-neighbor normalization: $p_{uv}^{(k-1)}$ in Comp. 1

- Normalization varies across neighbors
- Down-weights high degree neighbors

GCN in Matrix Form

Can be rewritten in the matrix form

• Which is efficiently implemented using sparse batch operations



GraphSage

GraphSage from [Hamilton et al., NeurIPS'2017]:

The most distinction is the generalized aggregation

$$h_{\mathcal{N}_u}^{(k-1)} = f_2^{(k-1)} \left(\left\{ h_v^{(k-1)} \right\}, \text{ for } v \in \mathcal{N}_u \right)$$

Generalized Aggregation Function in Comp. 2

→ Any differentiable function that maps a set of vectors to a single vector.

$$h_{u}^{(k)} = \sigma \left(\left[W_{1}^{(k)} \cdot \operatorname{AGG}\left(\left\{ h_{v}^{(k-1)}, \forall v \in \mathcal{N}_{u} \right\} \right), W_{2}^{(k)} h_{u}^{(k-1)} \right] \right)$$

Integration Function in Comp.3 → concatenate neighbors & self embeddings, instead of sum

Generalized Aggregation in GraphSage

• Mean
$$AGG = \sum_{\forall v \in \mathcal{N}_u} \frac{h_v^{(k-1)}}{|\mathcal{N}_v|}$$

- Pool
 - Transform neighbor vectors and apply symmetric vector function.

$$AGG = \frac{\gamma}{\gamma} (\{Qh_{v}^{(k-1)}, \forall v \in \mathcal{N}_{u}\})$$

- LSTM Element-wise mean/max
 - Apply LSTM to random permutation of neighbors.

$$AGG = LSTM([h_{v}^{(k-1)}, \forall v \in \mathcal{N}_{u}])$$

Hamilton et al., NeurIPS'2017. Inductive Representation Learning on Large Graphs. Slide from: <u>Jure Leskovec</u> et al. Representation Learning on Networks, Tutorial@WWW2018

Graph Attention Network (GAT)

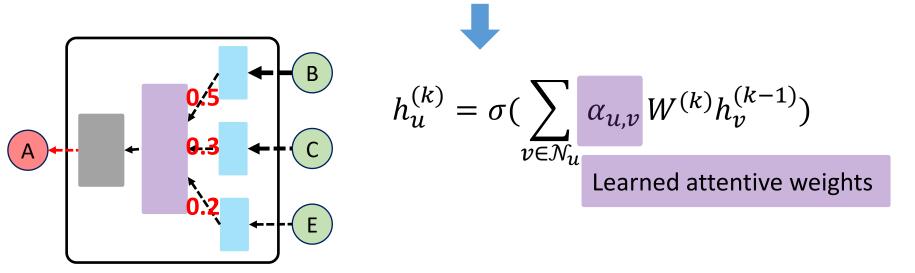
GAT from [Velickovic et al., ICLR'2018]:

• The most distinction is the **attentive neighborhood aggregation**

$$h_{\mathcal{N}_u}^{(k-1)} = f_2^{(k-1)} \left(\left\{ h_v^{(k-1)} \right\}, \text{ for } v \in \mathcal{N}_u \right)$$

Attentive Aggregation Function in Comp. 1&2

- \rightarrow Different neighbors have varying contributions when propagating information.
- \rightarrow Instead of fixed heuristic-based decay factor like GCN, GraphSage



Velickovic et al. Graph Attention Networks. ICLR 2018

Attention Weights in GAT

• Attention Network

$$\alpha_{v,u} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\top}[\mathbf{Q}\mathbf{h}_{v},\mathbf{Q}\mathbf{h}_{u}]\right)\right)}{\sum_{u'\in N(v)\cup\{v\}}\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\top}[\mathbf{Q}\mathbf{h}_{v},\mathbf{Q}\mathbf{h}_{u'}]\right)\right)}$$

• Multi-head Attention

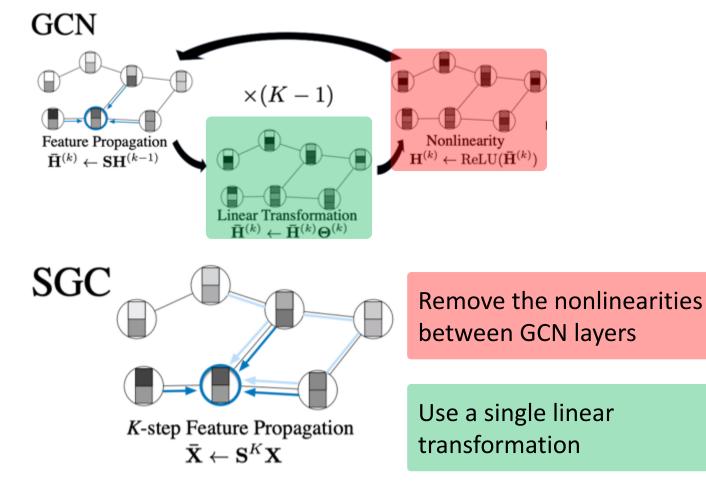
$$\begin{array}{c}
\vec{h_{2}} \\
\vec{h_{2}} \\
\vec{n_{11}} \\$$

Velickovic et al. Graph Attention Networks. ICLR 2018

Simple Graph Convolution (SGC)

SGC from [Wu et al., ICML'2019]:

Unnecessary complexity & redundant computation of GCN



SGC in Matrix Form

 SGC improves the efficiency of GCN largely without sacrificing accuracy, & even outperforms GCN on some tasks.

GCN:
$$H^{(k)} = \sigma \left(D^{-\frac{1}{2}} (A+I) D^{-\frac{1}{2}} H^{(k-1)} W_k \right) \longrightarrow Z = H^{(K)}$$

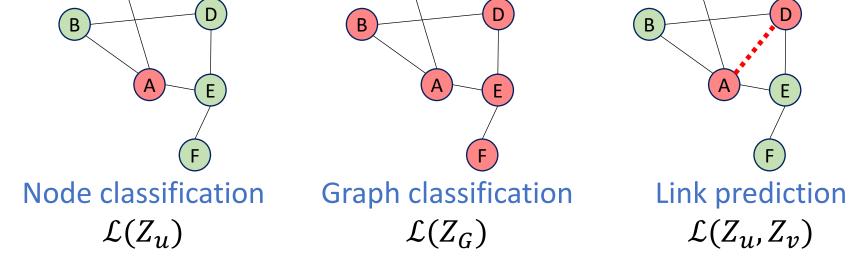
SGC:
$$H^{(k)} = D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}}H^{(k-1)}$$
 $\longrightarrow Z = H^{(K)}$
Only linear feature
propagation is remained

Training

 After K graph convolution layers (e.g., GCN, GraphSage, GAT, SGC), we get output embeddings for each node.

$$Z = H^{(K)}$$

Upon these embeddings, we can define a loss function for a specific task:
 C
 C
 D
 D



Run stochastic gradient descent to train the aggregation parameters

e.g., Node Classification Task

• positive or negative?

D

В

• Belonging to one of *C* classes

$$\mathcal{L} = \sum_{v \in V} y_v \log \left(\sigma(z_v^T \theta) \right) + (1 - y_v) \log \left(1 - \sigma(z_v^T \theta) \right)$$

Ground-truth label Trainable weights in the classifier

GNN embeddings can be plug-and-play & serve other semisupervised & unsupervised & supervised tasks.

Recent Research on GNN

- More Details in **Previous Tutorials**:
 - Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018
 - Hamiltion & Jie Tang. Graph Representation Learning, Tutorial@AAAI2019
 - Jie Tang et al. Representation Learning on Networks, Tutorial@WWW2019

- More Details in Survey Papers:
 - Zhou et al., Graph Neural Networks: A Review of Methods and Applications
 - Zhang et al., Deep Learning on Graphs: A Survey
 - Wu et al., A Comprehensive Survey on Graph Neural Networks

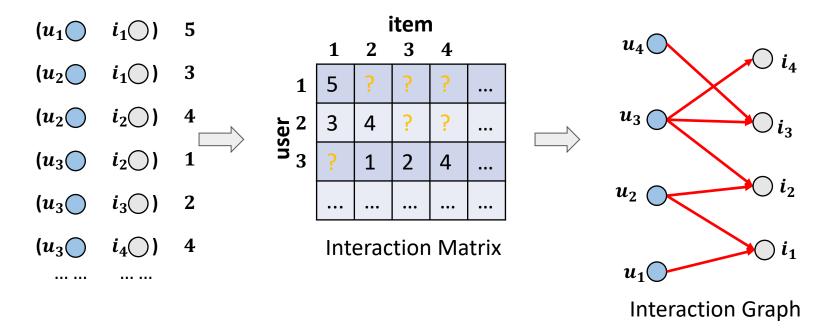
- More Paper Collections in Github:
 - <u>https://github.com/thunlp/GNNPapers#survey-papers</u>
 - <u>https://github.com/naganandy/graph-based-deep-learning-literature</u>

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation
 - Collaborative Filtering: GC-MC, SpectralCF, NGCF

Recap Collaborative Filtering (CF)

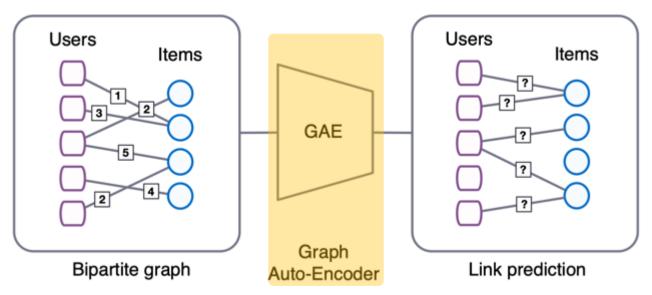
- Collaborative Signals → Behavior Similarity of Users
 - Similar users would have similar preference on items.
- User-Item Interaction Data → User-Item Bipartite Graph
 - Edges indicate the user behaviors.



Graph Convolutional Matrix Completion (GC-MC)

GC-MC from [Rianne et al., KDD'2018]

- View matrix completion as link prediction on interaction graph
 - Rating Prediction → predict links in bipartite user-item graph

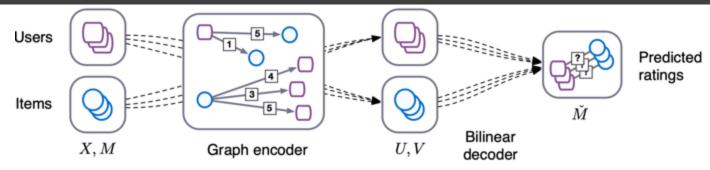


Generate high-quality embeddings of users and items on the graph in an end-to-end fashion

• Previous solutions separate the graph feature model and link prediction model

Rianne et al. Graph Convolutional Matrix Completion. KDD 2018

Graph Convolutional Encoder in GC-MC



• Comp.1: Information Construction:

 $\mu_{j \to i,r} = \frac{1}{c_{ij}} W_r x_j^{v}$ Different W_r are assigned to different rating level r.

• Comp.2: Neighborhood Aggregation:

$$h_i^u = \sigma \left[\operatorname{accum} \left(\sum_{j \in \mathcal{N}_i(u_i)} \mu_{j \to i, 1}, \dots, \sum_{j \in \mathcal{N}_R(u_i)} \mu_{j \to i, R} \right) \right]$$

• Comp.3: Representation Update:

 $z_i^u = \sigma(Wh_i^u)$

Accumulation operation over neighbors at all rating levels

Rianne et al. Graph Convolutional Matrix Completion. KDD 2018

Rating Prediction in GC-MC

• Rating Prediction

$$p(\check{M}_{ij} = r) = \frac{e^{(z_i^u)^T Q_r} z_j^v}{\sum_{s=1}^R e^{(z_i^u)^T Q_s v_j}}$$

Trainable weights for different rating levels

$$\check{M}_{ij} = g(u_i, v_j) = \mathbb{E}_{p(\check{M}_{ij}=r)}[r] = \sum_{r \in R} r p(\check{M}_{ij}=r)$$

• Model Training

$$\mathcal{L} = -\sum_{i,j;\Omega_{ij}=1} \sum_{r=1}^{R} I[M_{ij} = r] \log p(\check{M}_{ij} = r)$$

Negative log likelihood

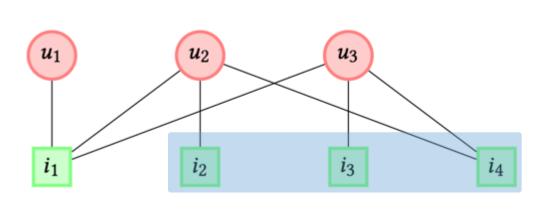
- Others:
 - One graph convolution layer achieved the best performance.
 - Structural information can be combined with interaction graph
 - Social networks, knowledge graphs, ...

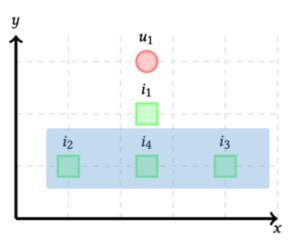
Rianne et al. Graph Convolutional Matrix Completion. KDD 2018

Spectral Collaborative Filtering

SpectralCF from [Zheng et al., RecSys'2018]

- User-Item Interaction Graph
 - GC-MC: use existing connectivity
 - SpectralCF: discover hidden connectivity in the spectral domain

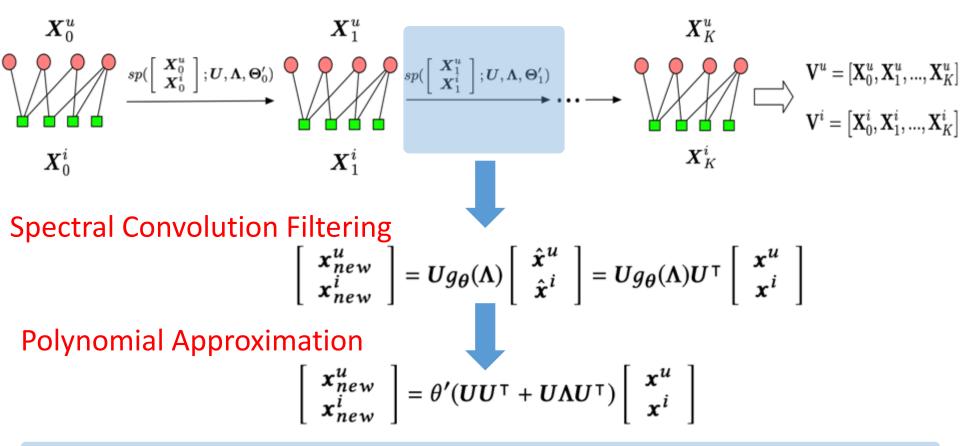




The connectivity between u_1 and i_2 , i_3 , i_4

- Uncovered in the frequency domain
- Discovered in the spectral domain

Spectral Convolution Filtering in SpectralCF



However, eigen-decomposition of graph adjacency matrix is required

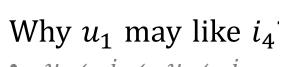
- A rather high complexity
- Difficult to support large-scale graphs

Zheng et al. Spectral Collaborative Filtering. RecSys 2018

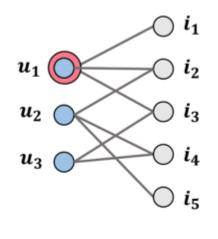
Neural Graph Collaborative Filtering (NGCF)

NGCF from [Wang et al., SIGIR'2019]

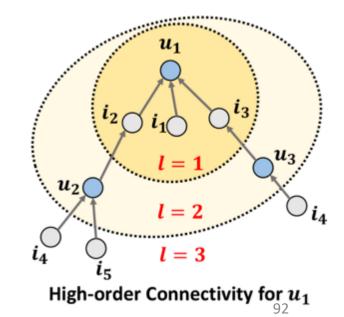
- Revisit CF via high-order connectivity
 - The paths that reach u_1 from any node with the path length l larger than $1 \rightarrow$ unseen connectivity argued in SpectralCF!
 - A natural way to encode collaborative signal in the interaction graph structure



• $u_1 \leftarrow i_2 \leftarrow u_2 \leftarrow i_4$ • $u_1 \leftarrow i_3 \leftarrow u_3 \leftarrow i_4$



User-Item Interaction Graph



First-order Connectivity Modeling

Inspired by GNNs

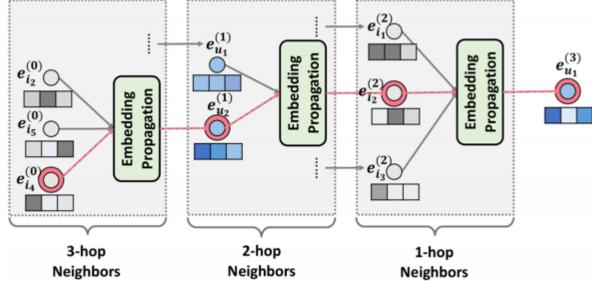
- 1. Propagate embeddings recursively on the user-item graph
- 2. Construct information flows in the embedding space
- Comp.1: Information Construction:

message passed from *i* to *u* $\mathbf{m}_{u \leftarrow i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ discount factor $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$ $\mathbf{w}_{i} = \frac{1}{\sqrt{|\mathcal{N}_u||\mathcal{N}_i|}} \left(\mathbf{W}_1 \mathbf{e}_i + \mathbf{W}_2(\mathbf{e}_i \odot \mathbf{e}_u) \right)$

$$\mathbf{e}_{u}^{(1)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}\right)$$
self-connections all neighbors of u

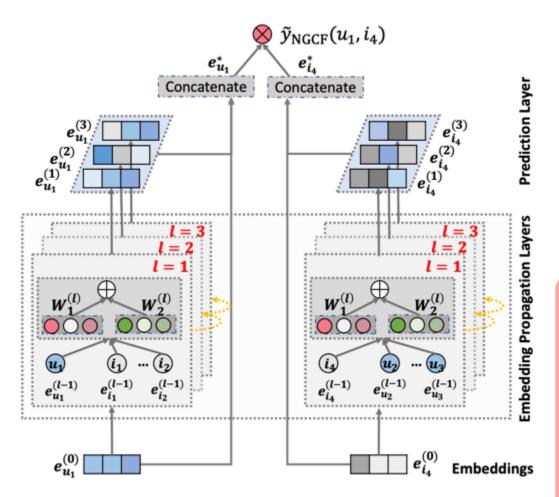
High-order Connectivity Modeling

Stack more embedding propagation layers to explore the high-order connectivity



- The collaborative signal like u1 ← i2 ← u2 ← i4 can be captured in the embedding propagation process.
- Collaborative signal can be injected into the representation learning process.

Overall Framework



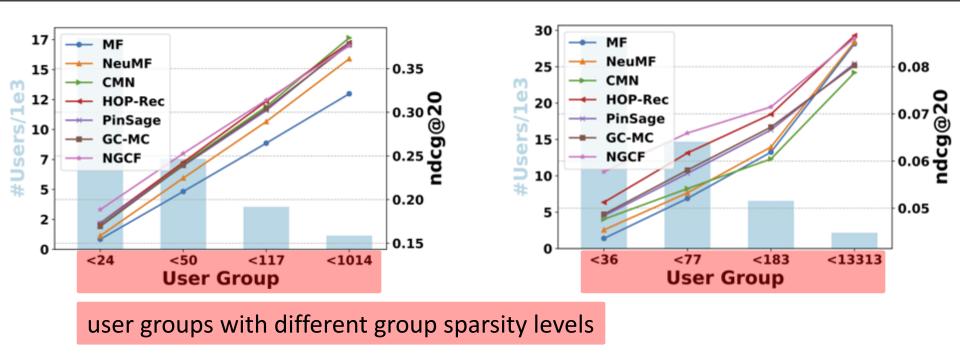
Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}$$
$$\mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)}$$
$$\hat{y}_{\text{NGCF}}(u, i) = \mathbf{e}_{u}^{* \top} \mathbf{e}_{i}^{*}$$

The representations at different layers

- emphasize the messages passed over different connections
- have different contributions in reflecting user preference

Experiment Results —— Sparsity Issue



- NGCF consistently outperforms all other baselines on most user groups.
- Exploiting high-order connectivity facilitates the representation learning for inactive users.
- It might be promising to solve the sparsity issue in recommender systems

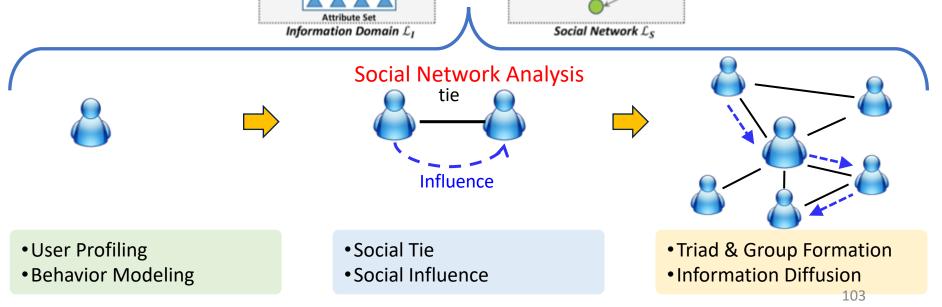
OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation
 - Social Recommendation: GraphRec, DiffNet, DANSER

Social Recommendation

Social relation is of importance to help users filter information

Tow graphs \rightarrow user-item interaction graph + user-user social graph. **User-User Connections** User-Item Interactions *i*₁ i2 i₁ i4 📃 u' i₃ Embedding of u_3 ĺ5 Bridge Users i4 Relevant Items i5

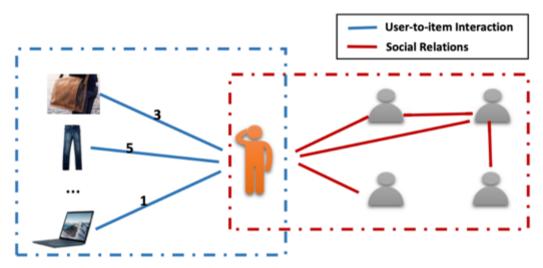


Snips from: Tang Jie et al. Representation Learning on Networks, Tutorial@WWW2019

Graph Neural Networks for Social Recommendation (GraphRec)

GraphRec from [Fan et al, WWW'2019]

- User-Item Graph
 - Interactions between users and items
 - Users' opinions on items (i.e., explicit feedback, ratings)
- User-User Graph
 - Social relations have heterogeneous strengths
 - Strong & weak ties are mixed together
 - Users are likely to share more similar tastes with strong ties than weak ties.



Fan et al. Graph Neural Networks for Social Recommendation. WWW 2019

User Modeling in GraphRec

These two graphs provide user information from different angles

- Item Aggregation
 - Item space: leverage user-item interactions to get user representations

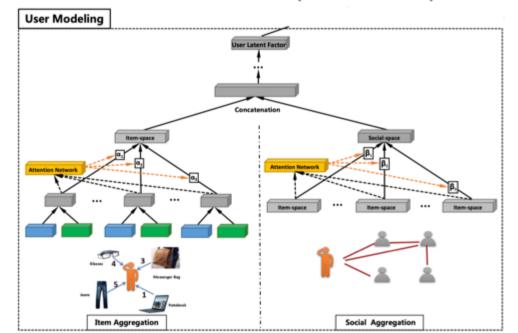
$$\mathbf{h}_{i}^{I} = \sigma(\mathbf{W} \cdot Aggre_{items}(\{\mathbf{x}_{ia}, \forall a \in C(i)\}) + \mathbf{b})$$

• Social Aggregation

Opinion-aware representation of an interaction

• Social space: use social relationships to get user representations

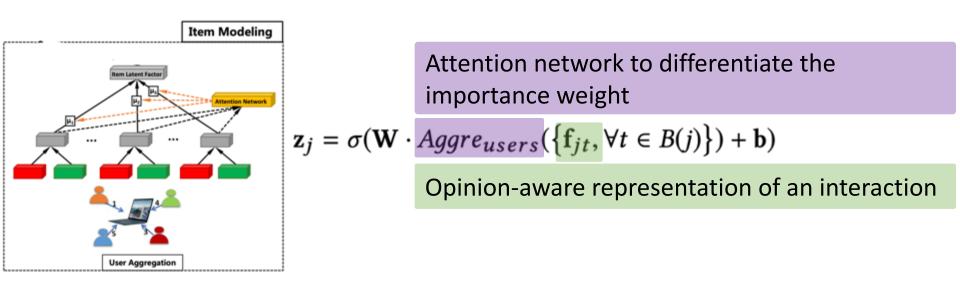
$$\mathbf{h}_{i}^{S} = \sigma(\mathbf{W} \cdot Aggre_{neigbhors}(\{\mathbf{h}_{o}^{I}, \forall o \in N(i)\}) + \mathbf{b})$$



Item Modeling in GraphRec

• User Aggregation

• Consider both interactions & opinions to get item representations



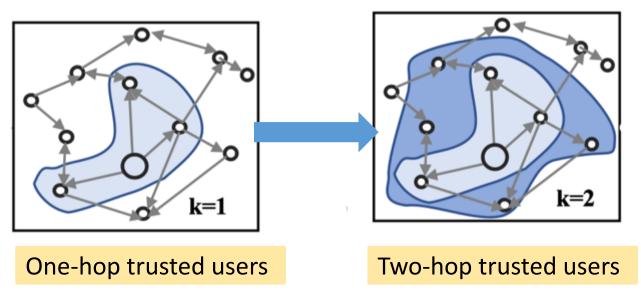
Rating Prediction

• Feed the concatenation of user & item representation into a neural network (MLP) to get predictions.

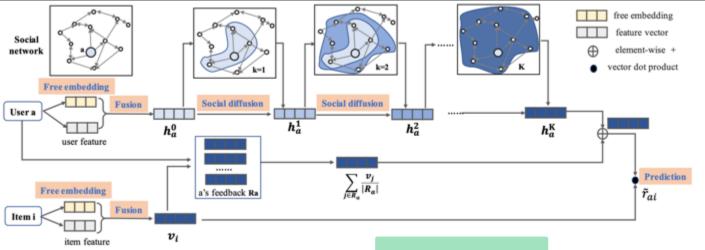
Neural Influence Diffusion Model (DiffNet)

DiffNet from [Wu et al, SIGIR'2019]

- Social Influence in Social Recommendation
 - A user's preference is influenced by her trusted users, with these trusted users are influenced by their own social connections -> high-order connectivity
 - Social influence recursively propagates & diffuses in social network!



Diffusion Influence Aggregation in DiffNet



Comp.1: Information Construction User features

$$\mathbf{h}_{a}^{0} = g(\mathbf{W}^{0} \times [\mathbf{x}_{a}, \mathbf{p}_{a}])$$
 User ID Embeddings

Comp.2: Diffusion Influence Aggregation

$$\mathbf{h}_{Sa}^{k+1} = Pool(\mathbf{h}_{b}^{k}|b \in S_{a})$$
 Ego social network

Comp.3: Representation Update

$$\mathbf{h}_{a}^{k+1} = s^{(k+1)}(\mathbf{W}^{k} \times [\mathbf{h}_{S_{a}}^{k+1}, \mathbf{h}_{a}^{k}]),$$

Wu et al. A Neural Influence Diffusion Model for Social Recommendation. SIGIR 2019

DANSER

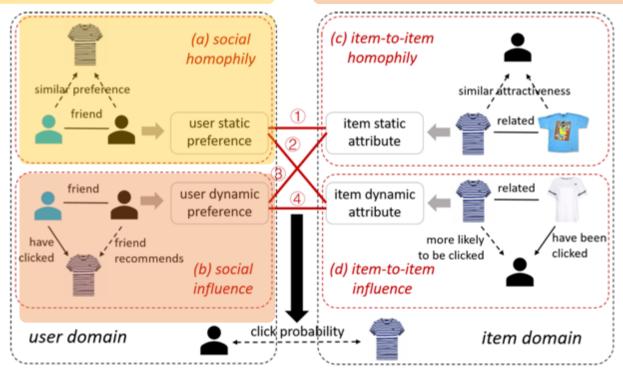
DANSER from [Wu et al, WWW'2019]

Social homophily

- User static preference
- Unchanged & independent of external contexts

Social influence

- User dynamic preference
- Change dynamically with specific contexts



Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. WWW 2019

DANSER

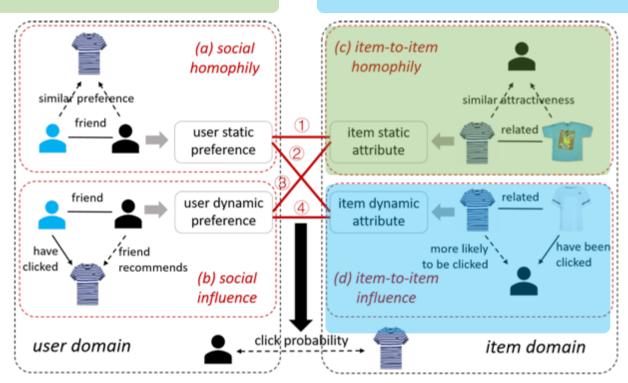
DANSER from [Wu et al, WWW'2019]

Item-to-item homophily

• Item static attribute

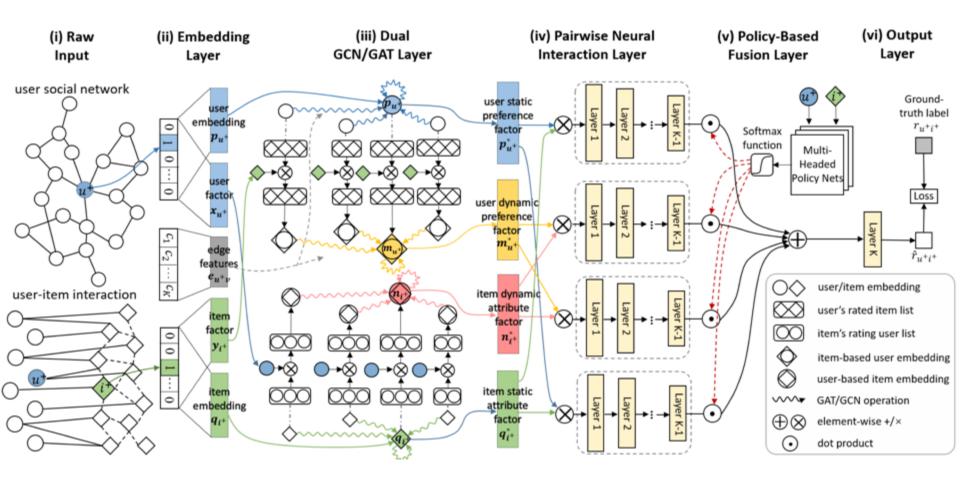
Item-to-item influence

- Item dynamic attribute
- Depends on a specific context



Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. WWW 2019

Dual GAT in User & Item Domains



Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. WWW 2019

Summary: GNN for Social Recommendation

	Graph Data	User Modeling	Item Modeling
GraphRec	 Interaction Graph Social Network 	First-order Connectivityhistorical itemssocial relations	First-order Connectivityuser feedback
DiffNet	Social Network	High-order Connectivitysocial influence	First-order Connectivityuser feedback
DANSER	 Interaction Graph Social Network 	 First-order Connectivity social homophily (static) social influence (dynamic) 	 First-order connectivity item homophily (static) item influence (dynamic)

Social recommendation needs more guides from social network analysis:

 Behavior modeling, social influence, group formation, information diffusion → from micro to macro!

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation
 - Sequential Recommendation: SR-GNN, DGRec

Slides in https://next-nus.github.io/

Sequential Recommendation

Sequential (Session-based) recommendation

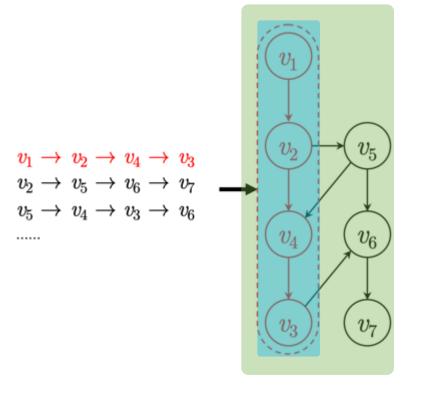
Given historical interactions, to predict the successive items that a user is likely to interact with → sequential needs of users

- User interests are dynamic in sessions.
- Sequential pattern is of crucial importance.

Session-based Recommendation with GNNs (SR-GNN)

SR-GNN from [Wu et al, AAAI'2019]

- Sequential pattern of a transition → one session sequence
- Complex patterns of item transitions → all session sequences



Reorganize all session sequences into graph structured data \rightarrow session graph

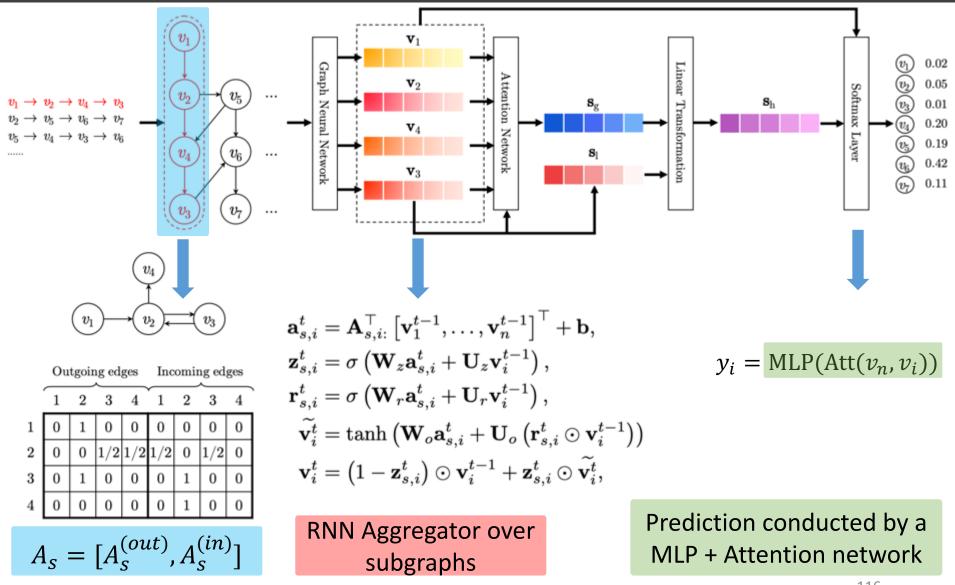
- A directed graph *G_s* over items
- Each edge $(v_{s,i-1}, v_{s,i})$ means a user clicks item $v_{s,i}$ after $v_{s,i-1}$ in session s
- Present the global preference in session s

treating a session sequences as a session subgraph

Present the current interest & sequential needs of the user in session s

Wu et al. Session-based Recommendation with Graph Neural Networks. AAAI 2019

Session Graphs with GNNs

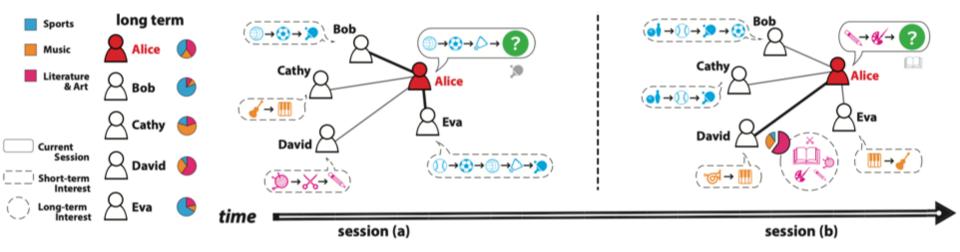


Wu et al. Session-based Recommendation with Graph Neural Networks. AAAI 2019

Dynamic Graph Attention Network for Session-based Social Recommendation (DGRec)

DGRec from [Song et al, WSDM'2019]

- Session + Social Recommendation → social networks
- User interests change across sessions, due to:
 - Short-term preferences of user friends
 - Long-term preferences of user friends



Song et al. Session-based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019

Dynamic Social Recommendation

• Dynamic individual interest in current session \rightarrow RNN

$$h_n = \frac{f(i_{T+1,n}^u, h_{n-1})}{f(i_{T+1,n}^u, h_{n-1})},$$

User session representation

LSTM adopted on the session sequence

$$\vec{S}_{T+1}^{u} = \{i_{T+1,1}^{u}, \dots, i_{T+1,n}^{u}\}$$
Session sequence of
the user

- Friends' interest
 - Short-term preferences \rightarrow a friend's latest online session

$$s_k^s = r_{N_{k,T}} = f(i_{T,N_{k,T}}^k, r_{N_{k,T-1}})$$

 Long-term preferences → a friend's average interests, which is no itemsensitive

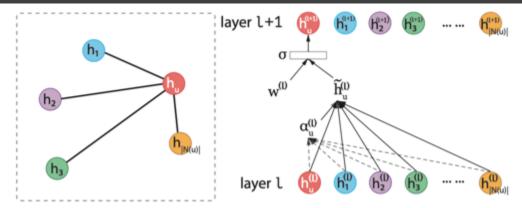
$$s_k^l = \mathbf{W}_u[k,:],$$
 User ID
embedding

Unified representation

$$s_k = ReLU(\mathbf{W}_1[s_k^s; s_k^l])$$

Song et al. Session-based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019

Dynamic Graph Attention Network



- Dynamic feature graph
 - User + Friends graph
 - Dynamic features \rightarrow updated whenever a user consumed a new item.
- Attentive social aggregation

$$\alpha_{uk}^{(l)} = \frac{exp(f(h_u^{(l)}, h_k^{(l)}))}{\sum_{j \in N(u) \cup \{u\}} exp(f(h_u^{(l)}, h_j^{(l)}))}$$

Level of influence or importance of a friend to the target user

$$\tilde{h}_u^{(l)} = \sum_{k \in N(u) \cup \{u\}} \alpha_{uk}^{(l)} h_k^{(l)}$$

Final representation combining user session interests & social influence

Song et al. Session-based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019

Summary: GNN for Sequential Recommendation

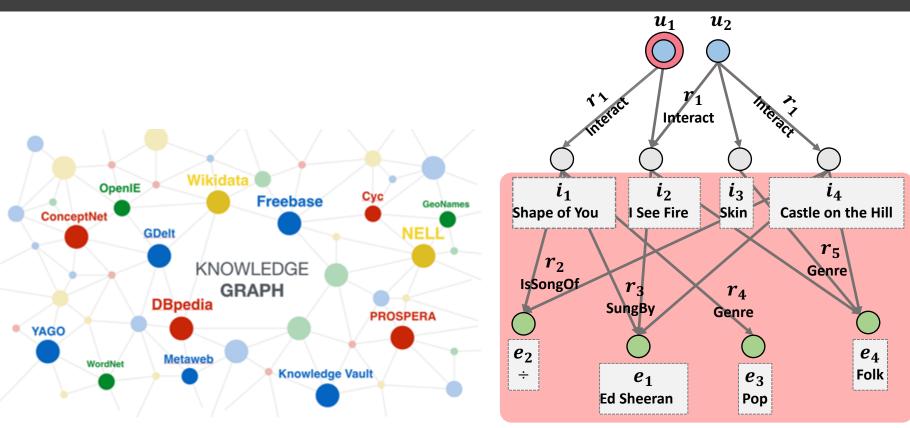
	Graph Data	User Modeling	Item Modeling
SR-GNN	Directed Session Graph	 Global preference in all session sequences Local preference in a session sequence Without ID information 	Graph representations
DGRec	Social Network	 Short-term preference in the latest session (sequential pattern) Long-term preference in all sessions (ID Information) Social influence (graph) 	ID embeddings

Sequential recommendation needs new & reasonable angles to organize sequence data in the form of graph.

OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation
 - Knowledge Graph-based Recommendation: KGCN, KGNN-LS, KGAT

Knowledge Graph-based Recommendation



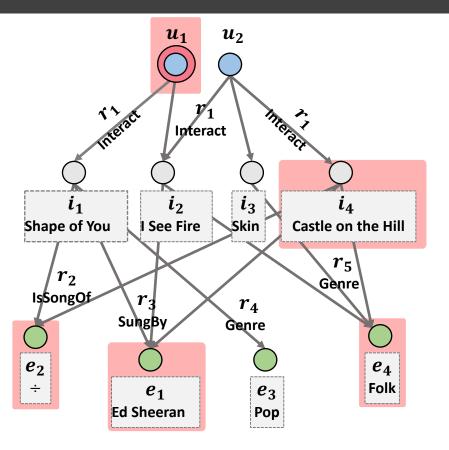
Knowledge Graph (KG):

- Background knowledge on items
- Rich semantics & Relations
- Structural information

Benefit for Recommendation

- Narrow down search space
- Explore user interests reasonably
- Offer explanations

Prior Works: Supervised Learning-based



To estimate u_1 's preference on i_2

Feature Engineering

- u_1 i_4 interaction as an data instance
- transfer item knowledge into a feature vector is $\vec{x} = \langle u_1, i_4, e_1, e_2, e_4 \rangle$

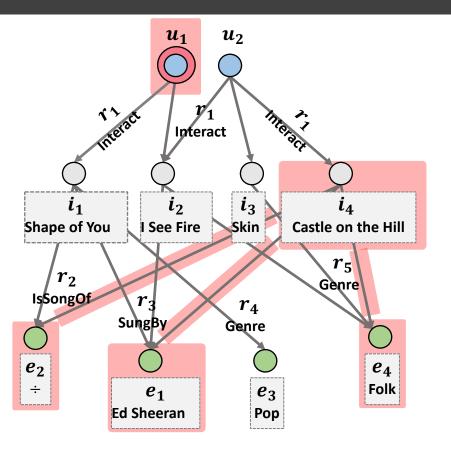
Prediction Modeling

- A supervised learning model
- e.g., FM, NFM, Wide&Deep

Limitations

- Semantic relations are ignored
- Graph structure is ignored
- CF signals are captured in an implicit fashion
- High-order connectivity/relation are ignored

Prior Works: Regularized-based



To estimate u_1 's preference on i_2

Representation Learning

- *i*₄-related KG triplets **regularize** the learning of its representation
- Translational Principle
 - Head + Relation \approx Tail

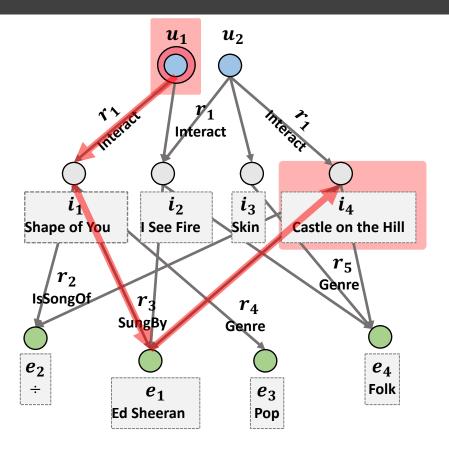
Interaction Modeling

- Reconstruct direct user-item interactions
- e.g., NCF, MF, ...

Limitations

- High-order connectivity between user and item nodes are modeled in an implicit fashion
- It fails to synthesize high-order relations.

Prior Works: Path-based



To estimate u_1 's preference on i_2

Representation Learning

- Paths connecting u_1 and i_4 to represent their connectivity
- $u_1 \rightarrow i_1 \rightarrow e_1 \rightarrow i_2$.

Interaction Modeling

- Information fusion of multiple paths
- A supervised learning model

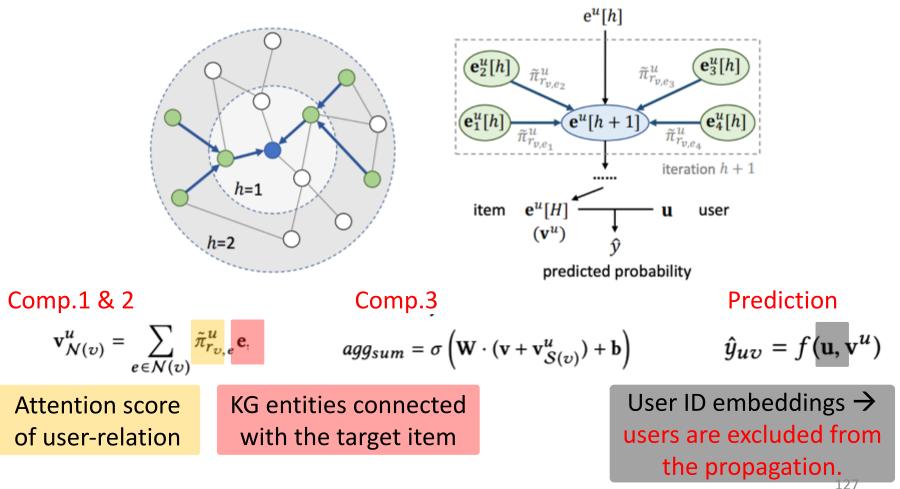
Limitations

- Require **domain knowledge** to define meta-paths
- Require **labor-intensive feature engineering** to extract qualified paths
- Have rather high complexity

Knowledge Graph Convolution Network (KGCN)

KGCN from [Wang et al, WWW'2019]

• Item graph \rightarrow KG entities are used to enrich item representation

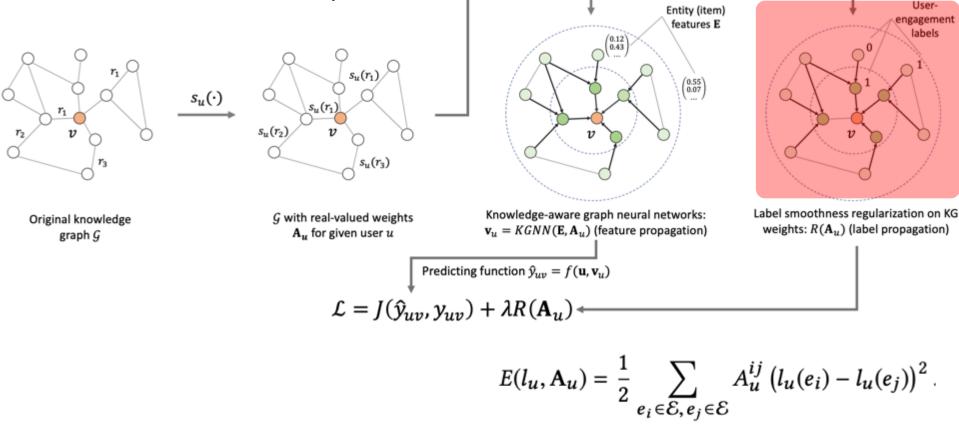


Wang et al. Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019

Knowledge Graph Neural Networks with Label Smoothness Regularization (KGNN-LS)

KGNN-LS is an extension of KGCN from [Wang et al, KDD'2019]

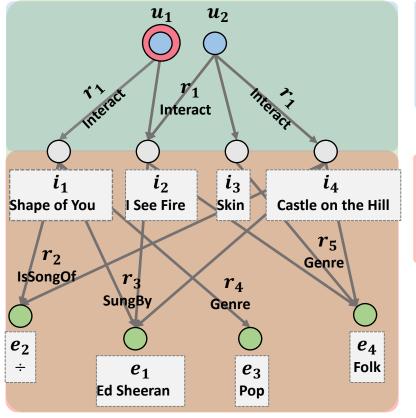
 Label smoothness → adjacent items in KG are likely to have similar user relevance labels/scores.

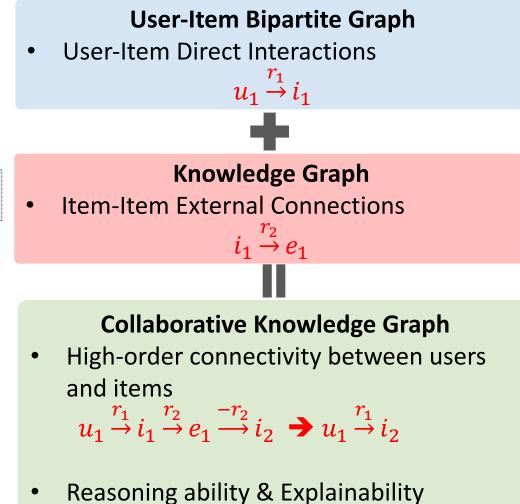


Wang et al. Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. KDD 2019

Knowledge Graph Attention Network (KGAT)

KGAT from [Wang et al, KDD'2019]

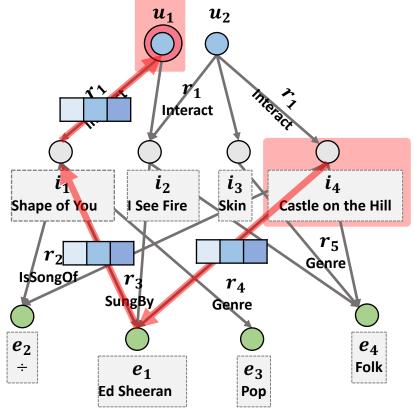




129

Wang et al. KGAT: Knowledge Attention Network for Recommendation. KDD 2019

Attentive Embedding Propagation in KGAT

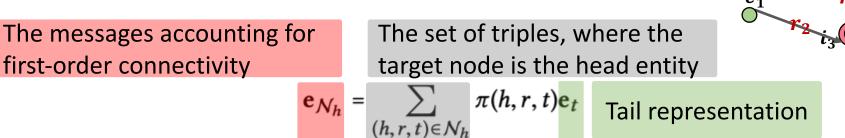


Attentive Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the graph
- Reveal the importance of a highorder connectivity via relationaware attentions
- Construct information flows in the embedding space

Attentive Embedding Propagation in KGAT

Comp.1: Information Propagation



• Comp.2: Knowledge-aware Attention Aggregation

decay factor on
each propagation
$$\pi(h, r, t) = (\mathbf{W}_r \mathbf{e}_t)^\top \tanh((\mathbf{W}_r \mathbf{e}_h + \mathbf{e}_r))$$

the attention score is dependent on the distance of e_t and e_h in r's space

• Comp.3: Representation Update

$$f_{\text{Bi-Interaction}} = \text{LeakyReLU}\Big(\mathbf{W}_1(\mathbf{e}_h + \mathbf{e}_{\mathcal{N}_h})\Big) + \text{LeakyReLU}\Big(\mathbf{W}_2(\mathbf{e}_h \odot \mathbf{e}_{\mathcal{N}_h})\Big),$$

Similar to NGCF

 r_3

Model Training

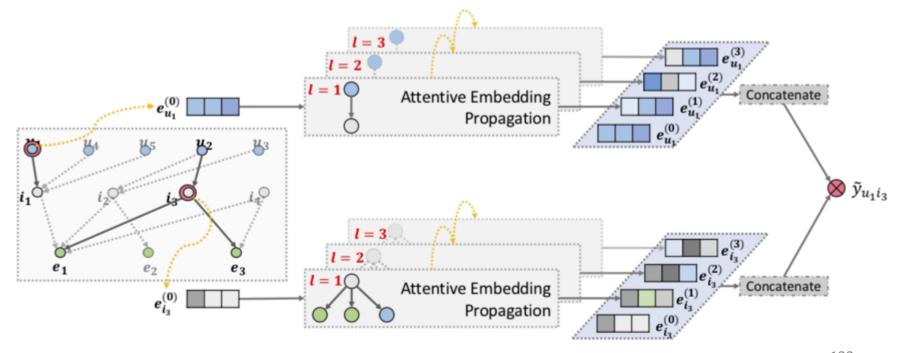
$$\mathbf{e}_u^* = \mathbf{e}_u^{(0)} \| \cdots \| \mathbf{e}_u^{(L)}$$

$$\mathbf{e}_i^* = \mathbf{e}_i^{(0)} \| \cdots \| \mathbf{e}_i^{(L)} \|$$

$$\hat{y}(u,i) = \mathbf{e}_u^* {}^\top \mathbf{e}_i^*$$

Similar to NGCF, the representations at different layers

- emphasize the messages passed over different connections
- have different contributions in reflecting user preference

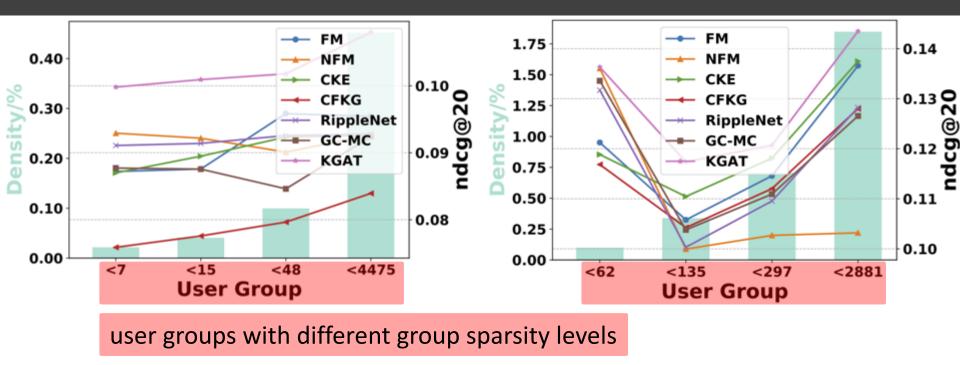


CKG Embedding Layer

Attentive Embedding Propagation Layers

Prediction Layer

Experiment Results — — Sparsity Issue



- KGAT outperforms the other models in most cases, especially on the two sparsest user groups in Amazon-Book and Yelp2018.
- It again verifies the significance of high-order connectivity modeling:
 - contains the lower-order connectivity
 - enriches the representations of inactive users via recursive embedding propagation 133

Case Study for Explainable Recommendation

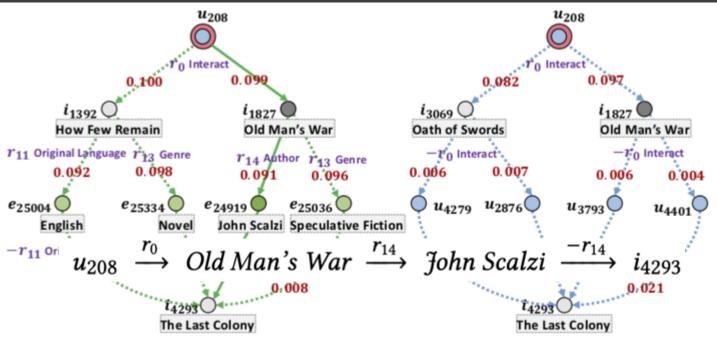


Figure 4: Real Example from Amazon-Book.

• KGAT captures the behavior-based and attribute-based high-order connectivity, which play a key role to infer user preferences.

$$u_{208} \xrightarrow{r_0} Old Man's War \xrightarrow{r_{14}} John Scalzi \xrightarrow{-r_{14}} i_{4293}$$

 The explanation can be "The Last Colony is recommended since you have watched Old Man's War written by the same author John Scalzi."

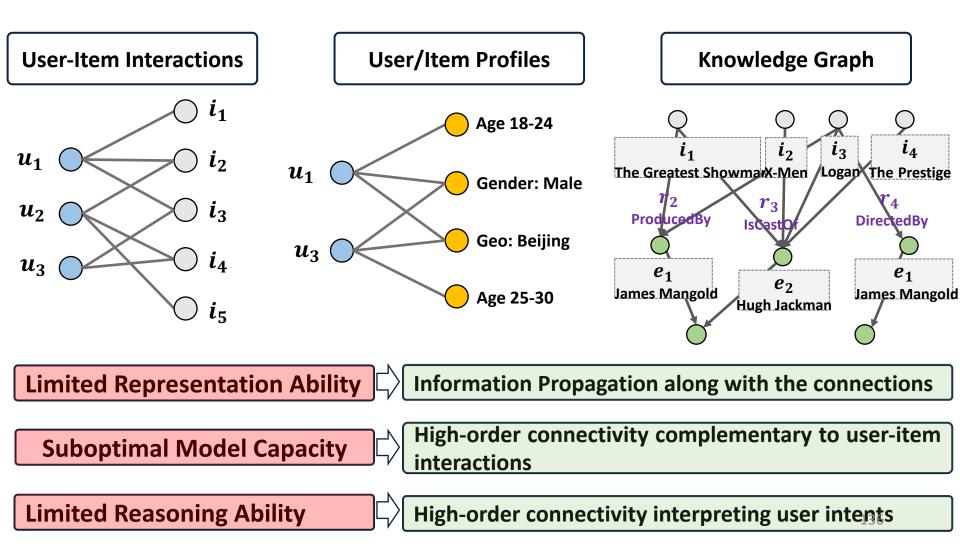
OUTLINE

- Introduction
- Part I: Preliminary of Recommendation
- Part II: Random Walk for Recommendation
- Part III: Network Embedding for Recommendation
- Part III: Graph Neural Networks for Recommendation
- Summary & Future Directions

Slides in https://next-nus.github.io/

Summary

The data is more closely connected that we might think!



Future Direction (1)

• Dynamic Graphs

- Graph for recommendation evolves over time
 - Online User-Item Interactions, Trending of (fashion) items, CTR prediction ...
- Challenges:
 - How to efficiently & incrementally update representations?
 - How to incorporate edge timing?
 - How to forget old/irrelevant information? ...
- Adversarial Learning
 - Attack & Defense
 - Node Features + Edge Features + Graph Structure
 - Applications:
 - Malicious detection, Fraud detection ...

Future Direction (2)

- Casual Inference
 - Get intents behind user behaviors
 - What contexts \rightarrow what behaviors are reasonable
 - Towards explainable recommendation

- Neural Symbolic Reasoning
 - Mimic Human reasoning
 - Study & Understand user behaviors

THANK YOU!