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Age of Information Explosion

Serious Issue of Information Overloading
Ø Weibo： >500M posts/day
Ø Flickr：>300M images/day
Ø Kuaishou: >20M microvideos/day

… …



Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:
• E-commerce, Content Sharing, Social Networking, Forum …

Ad & Product
Recommendation

Search results of Taobao5



Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:
• E-commerce, Content Sharing, Social Networking, Forum …

Image & Video
Recommendation

Search results of Pinterest 6



Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:
• E-commerce, Content Sharing, Social Networking, Forum …

Friend
Recommendation

Screenshot of Facebook 7



Ubiquitous Personalized Recommendation

Recommendation has been widely applied in online services:
• E-commerce, Content Sharing, Social Networking, Forum …

POI & Post
Recommendation

Screenshot of TripAdvisor
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Values of Recommender System (RecSys)

RecSys has become a major monetization tool for customer-
oriented online services:
• E-commerce, Content Sharing, Social Networking, Forum …

Ad systems are technically supported by recommendation
solutions:
• The key is Click-Through Rate (CTR) prediction.

Some Statistics:
• YouTube Homepage: 60%+ clicks [Davidson et al. 2010]

• Netflix: 80%+ movie watches [Gomze-Uribe et al 2016]

• Amazon: 30%+ page views [Smith and Linden, 2017]
9



The Era of Connected World

The world is more closely connected than you might think!

𝒖𝟐 𝒖𝟑

𝒊𝟏
Shape of You

𝒊𝟐
I See Fire

𝒊𝟑
Skin

𝒊𝟒
Castle on the Hill

𝒆𝟏
Ed Sheeran

𝒆𝟐
÷ 𝒆𝟑

Pop

𝒆𝟒
Folk

User-User Connections
• Social Relations
• Same Profiles …𝒖𝟏 𝒖𝟒

Item-Item Connections
• Same Attributes
• External Knowledge …

User-Item Interactions
• Implicit Feedback
• Explicit Feedback …
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• Part III: Graph Neural Networks for Recommendation

12

Slides in https://next-nus.github.io/

https://next-nus.github.io/


Overview of Recommendation Engine

User Interest is implicitly reflected in:
- Interaction history
- Demographics … 
- Contexts

User, 
Contexts

Items of 
Interest Item Corpus

Items can be: 
Products, News, Movies, 
Videos, Friends …

Key challenge: user-item semantic gap
• user and item are two different types of entities 

and are represented by different features. 

Ranking Candidate
Generation

MillionsHundreds

Recommendation Engine

Tens

13



Problem Formulation

?

User Profile:
- User ID
- Rating history
- Age, Gender
- Clicks
- Income level

…….

Item Profile:
- Item ID
- Description
- Image
- Category
- Price

…….

• Input: historical user-item interactions or additional side
information (e.g., user profile, item profile)

• Output: given a target Item (e.g., movie, song, product),
how likely a user would interact with it (e.g., click, view,
or purchase)

There may be no overlap between user features and item features.
14



Research on Prevalent RecSys

2009

2008~2013

1994~2004

2016~2018

Memory-based
o User Similarity [Thomas]
o Item Similarity [Greg Linden]
o Cosine Similarity[Stuart]
o Pearson Correlation [Paul]

Model-based (User CF)
o MF [Koren]
o BPR-MF [Rendle]

Model-based (Item CF)
o FISM [Kabbur]
o SLIM [Ning]
o SVD++ [Yehuda]

Deep Learning-based
o NeuMF [He]
o ONCF [He]
o DeepMF [Xue]
o ACF [Chen]
o NAIS [He]
o DeepICF [Xue]

2010~2016 Factorization Machines
o FM [Rendle]
o FFM [Juan]

2016~2019

Deep Learning-based
o NFM [He]
o DeepCross [Shan]
o YouTube Recommender

[Covington]
o Wide&Deep [Cheng]
o DeepFM [Guo]
o xDeepFM [Lian]
o FNN [Zhang]
o PNN [Qu]
o CrossNet [Wang]
o TEM [Wang]
o …

Collaborative Filtering Models Generic Feature-based Models
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Research on Collaborative Filtering Models

2009

2008~2013

1994~2004

2016~2018

Memory-based
o User Similarity [Thomas]
o Item Similarity [Greg Linden]
o Cosine Similarity[Stuart]
o Pearson Correlation [Paul]

User-based
o MF [Koren]
o BPR-MF [Rendle]

Item-based
o FISM [Kabbur]
o SLIM [Ning]
o SVD++ [Yehuda]

Deep Learning-based
o NeuMF [He]
o ONCF [He]
o DeepMF [Xue]
o ACF [Chen]
o NAIS [He]
o DeepICF [Xue]

Collaborative Filtering Models

Input Data:
• User-Item Interaction Data

• Explicit Feedback (e.g., rating)
• Implicit Feedback (e.g., clicks)

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

(𝒖𝟑 𝒊𝟐 )

(𝒖𝟑 𝒊𝟑 )

…… ……

𝒚𝒖𝟏𝒊𝟏

𝒚𝒖𝟏𝒊𝟏

𝒚𝒖𝟏𝒊𝟏

𝒚𝒖𝟏𝒊𝟏

𝒚𝒖𝟏𝒊𝟏
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Collaborative Filtering (CF)

• CF is the most well-known technique for recommendation.
• “CF makes predictions (filtering) about a user’s interest by

collecting preferences information from many users
(collaborating)” ---Wikipedia

• Collaborative Signals à Behavior Similarity of Users
• Similar users would have similar preference on items.

1. Memory-based CF: 
Predict by memorizing similar
users’ (or items’) ratings

2. Model-based CF: 
Predict by inferring from an
underlying model.

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

(𝒖𝟑 𝒊𝟐 )

(𝒖𝟑 𝒊𝟑 )

(𝒖𝟑 𝒊𝟒 )
…… ……

𝟓

𝟑

𝟒

𝟏

𝟐

𝟒

5 ? ? ? …

3 4 ? ? …

? 1 2 4 …

... … … … …

𝟏

𝟐

𝟑

𝟏 𝟐 𝟑 𝟒

us
er

item

Interaction Matrix
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Memory-based CF

Problem: predict user 𝑢’s rating on item 𝑖.
• User-based CF leverages the ratings of 𝑢’s 

similar users on the target item 𝑖.

• Item-based CF leverages the ratings of 𝑢 on 
other similar items of 𝑖.

• Many similarity measures can be used, e.g., Jaccard, 
Cosine, Pearson Correlation. Recent advance learns the 
similarity from data. 

5 ? ? ? …

3 4 ? ? …

? 1 2 4 …

... … … … …

𝟏

𝟐

𝟑

𝟏 𝟐 𝟑 𝟒

us
er

item

Interaction Matrix

Similar users of 𝑢
Rating of a similar user on 𝑖

Similar items of 𝑖
Rating of 𝑢 on a similar item
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Model-based CF

Matrix Factorization (MF) is the most popular and effective model-
based CF method.
• It represents a user and an item as a vector of latent factors.
• The score is estimated as the inner product of user latent vector

and item latent vector.

• Optimizing a loss to minimize the prediction error on training
data can get the latent vectors.

5 ? ? ? …

3 4 ? ? …

? 1 2 4 …

... … … … …

𝟏

𝟐

𝟑

𝟏 𝟐 𝟑 𝟒

us
er

item

Interaction Matrix

.𝑦01 =< 𝑢, 𝚤>
User latent vector 𝑢

Item latent vector 𝚤
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Item-based CF

Instead of only using an ID to encode a user, we can make the
encoding more meaningful by using the user’s rated items.
• This can be interpreted as an item-based CF model.

• E.g., FISM [Kabbur], SLIM [Ning]

User multi-hot encoding
on rated items

Item one-hot encoding

* * *

+

Use all items as neighbors Factorize item similarity in the latent space

20



Fusing User-based & Item-based CF

• MF (user-based CF) represents a user as her ID.
• Directly projecting the ID into latent space

• FISM (item-based CF) represents a user as her interacted items.
• Projecting interacted items into latent space

• SVD++ fuses the two types of models in the latent space:

o This is the best single model for rating prediction in the
Netflix challenge [Koren, KDD ’08].

User representation in latent space

21



Two Widely-Used Loss

Pointwise loss à e.g., log loss
• Cast the recommendation task as a classification problem
• Rating Prediction, CTR Prediction …

Pairwise loss à e.g., Bayesian Personalized Ranking (BPR) loss
• Cast the recommendation task as a ranking problem
• Top-N Recommendation, Preference Ranking …

Force the prediction scores to
be close to the target scores

Relative order between
observed & unobserved

interactions 22



Deep Learning Meets CF (1)
• Methods of representation learning

• Enhance representation ability/expressiveness of models

Model Input Data Representation
Learning

Interaction
Learning

DeepMF
[Xue, IJCAI’17]

User: Historical items
Item: User group

Multi-Layer
Perceptron

Inner product

AutoRec
[Sedhain, WWW’15]

User: Historical items
Item: ID

Multi-Layer
Perceptron

Inner Product

CDAE
[Wu, WSDM’16]

User: Historical items + ID
Item: ID

Multi-Layer
Perceptron

Inner Product
23



Deep Matrix Factorization (Xue, IJCAI’17)

Representation Learning à Multi-layer perceptron
• Deep Neural Networks are adopted to learn representations of

users & items

User: Row vector of
interaction matrix

Item: Column vector
of interaction matrix

User RL Item RL

24



Deep Learning Meets CF (2)
• Methods of interaction function learning

• Capture complex patterns of user-item relationships

Model Input Data Representation
Learning

Interaction
Learning

NCF
[He, WWW’17]

User: ID
Item: ID

ID embedding Multi-Layer
Perceptron

NNCF
[Bai, CIKM’17]

User: User neighbors
Item: Item neighbors

Embeddings Multi-Layer
Perceptron

ONCF
[He, IJCAI’28]

User: ID
Item: ID

ID embedding Convolutional
Neural Network26



Neural Matrix Factorization (He, WWW’17)

Interaction Modeling à MF + MLP over users and items
• MF uses inner product to capture the low-rank relation
• MLP is more flexible in using DNN to learn the matching function.

27



NNCF: Neighbor-based NCF (Bai, CIKM’17)

Interaction Modeling à MF + MLP over user and item neighbors
• Feeding user and item neighbors into the NCF framework

28



Research on Feature-based Models

2010~2016 Factorization Machines
o FM [Rendle]
o FFM [Juan]

2016~2019

Deep Learning-based
o NFM [He]
o DeepCross [Shan]
o YouTube Recommender

[Covington]
o Wide&Deep [Cheng]
o DeepFM [Guo]
o xDeepFM [Lian]
o FNN [Zhang]
o PNN [Qu]
o CrossNet [Wang]
o TEM [Wang]
o …

Generic Feature-based Models

Input Data:
• User-Item Interaction Data
• Other Information

• User Data
• Item Data
• Context Data

E.g., user gender,
age, occupation
personality … E.g., item category,

description, image …

rating data

context data

user
data

item data

E.g., location, time,
weather, mood …

29



Feature-based Models

E.g., user gender,
age, occupation
personality … E.g., item category,

description, image …

rating data

context data

user
data

item data

E.g., location, time,
weather, mood …

Raw Features:
• Categorical Features:

o One-hot encoding on ID 
features

• Continuous Features:
o E.g., time, frequency. Need 

feature normalization

Transformed Features:
• Categorical Features:

o Cross Features are important
(e.g., AND(A=True, B=True))

• Continuous Features:
o E.g., outputs of other models 

like visual embeddings. 30



Factorization Machine (FM)

• FM is inspired from previous factorization models
• It represents each feature as a latent vector (embedding), and

models the second-order feature interactions:

• FM allows easy feature engineering for recommendation, and
can mimic many existing models (that are designed for a specific
task) by inputting different features.
• E.g., MF, SVD++, timeSVD [Koren, KDD’09], PIFT [Rendle, WSDM’10] etc.

Second-order:
Pair-wise interactions between features

First-order:
Linear Regression

31



Wide&Deep (Cheng et al, RecSys’16)

• The wide part is linear regression for memorizing seen feature
interactions, which requires careful engineering on cross features.
• E.g., AND(gender=female, language=en) is 1 if both single features are 1

• The deep part is DNN for generalizing to unseen feature interactions.
• Cross feature effects are captured in an implicit way.

32



Neural Factorization Machine (He et al, SIGIR’17)

• Inspired by FM, NFM models pairwise interactions between
feature embeddings with multiplication.

Capture bilinear interaction

Capture higher-order feature 
interactions

33



A General Paradigm
Transform each observation, a user-item pair (𝑢, 𝑖) or with side
information 𝑢, 𝑖, 𝑐 , into a separate data instance
• Initiate representations for each feature à Representation Learning

• Design whatever features as you want
• Perform predictions based on interactions à Interaction Modeling

• Design whatever networks as you like

Interaction
Modeling

9𝑦01Representation
Learning

Data instance
(𝑢, 𝑖) or (𝑢, 𝑖, 𝑐)

User Item Other Features

…

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

(𝒖𝟑 𝒊𝟐 )

(𝒖𝟑 𝒊𝟑 )

…… ……

34



Information Isolated Island Issue (1)

Treating each observation as an independent instance
• Forgoing relationships among instances

Interaction
Modeling

9𝑦01Representation
Learning

Data instance
(𝑢, 𝑖) or (𝑢, 𝑖, 𝑐)

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

…… ……

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

User-Item Interactions
• Behavior similarity among users
• Audience similarity among items

(𝒖𝟏 𝒊𝟏

(𝒖𝟐 𝒊𝟏

(𝒖𝟐 𝒊𝟐

𝒖𝟑

𝒖𝟑 )

𝒖𝟑 )

User-Item Interactions + Social Ties
• Shared friends as bridge among users

à mouth marketing

𝒖𝟒 )

35



Information Isolated Island Issue (2)

Treating each observation as an independent instance
• Limited Representation Ability

• Instance representation is dependent on its own features merely
• SVD++, NAIS: CF with neighbors as input are more expressive

Interaction
Modeling

9𝑦01Representation
Learning

Data instance
(𝑢, 𝑖) or (𝑢, 𝑖, 𝑐)

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

…… ……

• Suffer from sparsity issue
• inactive users, unpopular

items, infrequent features à
insufficient information to
learn optimal representation 36



Information Isolated Island Issue (3)

Treating each observation as an independent instance
• Suboptimal Model Capacity

• Suboptimal representations lead to unsatisfactory interaction
model, especially for unseen (user-item or feature) interactions

Interaction
Modeling

9𝑦01Representation
Learning

Data instance
(𝑢, 𝑖) or (𝑢, 𝑖, 𝑐)

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

…… ……

The methods have to rely on
complex interaction function
to make up for the deficiency
of suboptimal embeddings

37



Information Isolated Island Issue (4)

Treating each observation as an independent instance
• Components work as a black-box

• hardly exhibit the reasons behind a recommendation
• Make the decision-making process opaque to understand

Interaction
Modeling

9𝑦01Representation
Learning

Data instance
(𝑢, 𝑖) or (𝑢, 𝑖, 𝑐)

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

…… ……

(𝒖𝟏 𝒊𝟏 )

Why 𝒊𝟏 is recommended to 𝒖𝟏? Which
one is more important?
• Collaborative Signals?
• Mouth Marketing?
• Item Knowledge?

38



How to Solve Such Issue?

Interaction
Modeling

9𝑦01Representation
Learning

Data instance
(𝑢, 𝑖) or (𝑢, 𝑖, 𝑐)

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

(𝒖𝟑 𝒊𝟐 )

(𝒖𝟑 𝒊𝟑 )

…… ……

Explore & Exploit Relations
among Instances

Apply Techniques of Graph
Learning & Reasoning

39
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Random Walk

Graph Data 𝐺:
• 𝑉 is the vertex set
• 𝐸 = 𝑉× 𝑉 is the edge set

Random Walk à exhibit high-order proximity among nodes
1. Given an initial vertex (node) 𝑣?, select randomly an adjacent node

𝑣@;
2. Move to this neighbor 𝑣@ and treat 𝑣@ as the starting node;
3. Repeat Steps 1& 2.

B

A

D

C

E

F

A à B à D à E à F

𝑝1B = P(𝑣DE@ = 𝑗|𝑣D = 𝑖) = H
1
|𝑁1|

, if 𝑖, 𝑗 ∈ 𝐸

0, otherwise

43



Motivation —— Preference Propagation

(𝒖𝟏 𝒊𝟏 )

(𝒖𝟐 𝒊𝟏 )

(𝒖𝟐 𝒊𝟐 )

(𝒖𝟑 𝒊𝟐 )

(𝒖𝟑 𝒊𝟑 )

(𝒖𝟑 𝒊𝟒 )
…… ……

𝟓

𝟑

𝟒

𝟏

𝟐

𝟒

𝒖𝟐

𝒖𝟑

𝒖𝟏

𝒖𝟒

𝒊𝟏

𝒊𝟐

𝒊𝟑

𝒊𝟒

Interaction GraphInteraction Data

Target User 𝒖𝟐

High-order Proximityà Label Propagation à Preference Distribution
• Label (preference) propagation from the target user’s historical

item nodes assigns unseen items with expected labels.

Item ranking 𝑖V > 𝑖X ≈ 𝑖Z
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Absorption: Random Walk Through View Graph

Absorption from [Baluja et al, WWW’2008]:
• Interactions à item-item co-viewed graph or user-item graph

• Edges à two video items are often co-viewed

Bakuja et al, Video Suggestion and Discovery for YouTube: Taking Random Walks Through the View Graph.
WWW’2008:

The probability of reaching 𝒖
from 𝒗 in one random walk step

The probability of picking
a neighbor 𝒘 of 𝒖

Take a starting node
𝒗 for a random walk
& output a label
distribution
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ItemRank: A Random-Walk Scoring Algorithm

ItemRank from [Gori et al, IJCAI’2007]:
• Interactions à item-item correlation graph

• Edges à the shared user groups

• Inspired by Classic PageRank [Kamvar et al., 2003a]:

• ItemRank

Gori et al, ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines. IJCAI’2017

Normalized connectivity
matrix for graph

Importance score
for every node

User preference recorded
in training set à bias

Preference score
for an item node
& user profile

Restart
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TriRank: Ranking over Tripartite Graph

TriRank from [He et al, CIKM’2015]:
• User-Item Interactions + Item Aspects à Tripartite Graph

• User 𝒖 previously rated item 𝒑 with mentioning aspect 𝒂

• Ranking score for all nodes of a node
• User-User à user similarity;
• User-Aspect à interests on aspects
• User-Item à preference on items

• Smoothness Constrain

• Fitting Constrain

He et al, TriRank: Review-aware Explainable Recommendation by Modeling Aspects. CIKM’2015

Ranking scores should adhere to
the observations (i.e., initial values).

Local consistency à ranking
scores of nearby nodes
should not vary too much
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Pixie Random Walk

Pixie from [Eksombatchai et al, WWW’2018]:
• Undirected Pin-Board Graph

• An edge between a pin 𝒑 and a board 𝒃 if a user saved 𝒑 to 𝒃

• Input: a user-specific input query pin 𝑞
• Output: relevant pin 𝑝

Basic Random Walk:
• Simulate many random walks on 𝐺, starting from 𝑞
• record visit count for each candidate pin 𝑝
• The more often 𝑝 is visited à More related it is to 𝑞

Pixie Random Walk:
• Bias the random walk towards user-specific pins (𝑞, 𝑈) à personalized results

for even the same query set
• Perform queries based on multiple pins (𝑞 ∈ 𝑄, 𝑈) each with a different

importance à consider the history of users
Eksombatchai et al, Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Real-Time.
WWW’2018
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RecWalk: Nearly Uncoupled Random Walks

RecWalk from [Nikolakopoulos et al, WSDM’2019]:
• Interactions à User-Item Bipartite Graph

Transition probability matrix to govern the random sampler

1. One based on bipartite graph

2. The other designed to capture item relations

Recommendation Strategies
• the probability the random walker lands on nodes after steps.

Nikolakopoulos et al, RecWalk: Nearly Uncoupled Random Walks for Top-N Recommendation. WSDM’2019

Interaction matrix
Adjacency matrix
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Summary: Random Walk for Recommendation
Graph Data Random Walk

Absorption Item-item co-viewed graph Basic

ItemRank Item-item correlation graph User-specific transition probability

TriRank User-item-aspect tripartite
graph

Smoothness & fitting constrains

Pixie Pin-board graph User-specific multi-pin transition
probability

RecWalk User-item bipartite graph Basic + item relation-guided
transition probability

Limitations
• Efficiency Issue:

• for every user, generate ranking scores on all items each step à hard to
apply large-scale graphs

• Lack model parameters to optimize recommendation objective
• heuristic-based, rather than learning-based paradigm 50
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Network Embedding

Also well known as graph representation learning, node embedding,
graph embedding.

Input: graph Data 𝐺
• 𝑉 is the vertex set
• 𝐸 = 𝑉× 𝑉 is the edge set

Output: 𝑍 ∈ 𝑅|e|×f latent feature representation matrix

Snips from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018
52
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Intuition

Goal:
• Find embedding of nodes to 𝑑–dimensions
• Similarity in the embedding space approximates similarity in the

original network

Need to define:
• Encoder
• Similarity function

Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018
53
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Two Main Components

• Encoder
• To embed each node to a low-dimension vector representation

• Similarity Function
• To specify how relationships in the embedding space map to

relationships in the original network.

Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

ENC(𝑣) = 𝑧l Node in input graph

similarity(𝑣, 𝑢) = 𝑧0q𝑧l
Similarity in the original
network
• Are connected?
• Share neighbors?
• Have similar structural

roles?

Similarity in the
embedding space
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One- & Multi-hop Similarity

Similarity Function
• the edge weight between 𝑣 and 𝑢 in the original network.

• One-hop Similarity à Adjacency Similarity
• e.g., [Ahmed et al. WWW’2013]

• Multi-hop Similarity à overlap between node multi-hop neighbors
• e.g., [Cao et al. CIKM’2015], [Ou et al. KDD’2016]

Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

ℒ = s
(0,l)∈t×t

||𝑧0q𝑧l − 𝐴0l||V
(Weighted) adjacency
matrix for input graph
• Only consider the

existence of direct
connectionsAll node pairs

ℒ = s
(0,l)∈t×t

||𝑧0q𝑧l − 𝑆0l||V Neighborhood overlap
between nodes
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Random Walk-based Similarity

Similarity Function
• Probability that 𝑢 and 𝑣 co-occur on a random walk over the graph
• E.g., DeepWalk, node2vec …

Slides from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018
Slide from: Tang Jie et al. Representation Learning on Networks, Tutorial@WWW2019

Random walks

𝑤1

𝑤1yV
𝑤1y@

𝑤1E@
𝑤1EV

v1 v2v3 v5v3
v1 v3v2 v5
v1 v5v3 v3
v1 v1v2 v3 v4

v4

v3

Skip gram
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Heterogeneous Preference Embedding (HPE)

HPE from [Yang et al, RecSys’2016]
• Interactions + Side information à heterogeneous graph
• Random walk similarity

• treat indirect user-item interactions as user context

Yang et al, Query-based Music Recommendations via Preference Embedding. RecSys’2016

Indirect connected nodes as the
contextual information of ego
node

Learn the preference embeddings
via contextual nodes

Random walk steps
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HOP-Rec: High-Order Proximity for Recommendation

HOP-Rec from [Yang et al, RecSys’2018]
• Interactions à user-item bipartite graph
• Random walk similarity

• In a path, nodes with different orders à different confidence
• Involve indirect user-item interactions into user preference

Yang et al, HOP-Rec: High-Order Proximity for Implicit Recommendation. RecSys’2018
58



HOP-Rec: High-Order Proximity for Recommendation

HOP-Rec from [Yang et al, RecSys’2018]

Yang et al, HOP-Rec: High-Order Proximity for Implicit Recommendation. RecSys’2018

A random walk with a decay factor for
confidence weighting 𝑪(𝒌)
• For a given walk sequence, item with

order 𝑘 that the user potential
prefers à treated as positive
instances

Matrix Factorization with BPR loss
• Random walk enriches the positive

observations
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Collaborative Similarity Embedding (CES)

CES from [Chen et al, WWW’2019]
• Interactions à user-item bipartite graph

Chen et al, Collaborative Similarity Embedding for Recommender Systems. WWW’2019.

Maximize the likelihood of
observed pairs

• Conduct k-step random walk
• Get neighborhoods of a user (or item)

pair
• Neighborhood proximity à user (or item)

similarity
60



Summary: Network Embedding for
Recommendation

Graph Data Connectivity/Proximity

HPE Heterogeneous graph Indirect connections

HOP-Rec User-item bipartite graph • Direct connections
• Indirect connections

CES User-item bipartite graph • Direct similarity
• Neighborhood proximity similarity

Limitations
• Not end-to-end Learning:

• Random walk is conducted first to get multi-hop neighbors

• Not fully explore high-order connectivity
• Multi-hop neighbors are used to enrich the training data, rather than

directly contributing to the representation learning
61
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Recent Graph Neural Network (GNN) Research

2017 GCN

2017 GraphSage

2018 GAT

2018 SGC
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Graph Data 𝐺
• 𝑉 is the vertex set
• 𝐸 = 𝑉× 𝑉 is the edge set

• Undirected: social relations, user-item interactions …
• Directed: triplets in knowledge graph

• 𝐴 ∈ 𝑅|e|×|e| is the adjacency matrix

• 𝐴1,B = }
𝑎1,B > 0 𝑖, 𝑗 ∈ 𝐸
0 𝑖, 𝑗 ∉ 𝐸

• 𝑋 ∈ 𝑅f×|e| is a matrix of node features
• Categorical attributes, text, image data
• Node degrees, clustering coefficient, …
• Indicator vectors (i.e., one-hot encoding of each node)

• 𝑋′ ∈ 𝑅f�×|t| is a matrix of edge features
• Relations 64



Graph Convolution Network (GCN)
• At the core of GCN

1. Model a local structural information (neighborhood) of a node
as the receptive field

2. Apply the graph convolution operation
• Spectral domain:

• Laplacian eigen-decomposition [Bruna et al. ICLR’2014]

• Chebyshev polynomials [Defferrard et al, NeurIPS’2016]

• However, computationally expensive

• Spatial domain:
• Node (Neighborhood) aggregation [William et al, NeurIPS’2017]

3. Update its representation.
• 𝑍 ∈ 𝑅f×|e| latent feature representation matrix
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Neighborhood Aggregation (1)

Key Idea:
• Generate node embeddings based on local neighbors
• Neighborhood defines a computation graph.

B

A

D

C

E

A

B

C

E

Computation Graph of
node A

F

?
One-hop Neighborhood of node A:

𝑵� = {𝐵, 𝐶, 𝐸}
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Neighborhood Aggregation (2)

Message Passing/ Information Propagation:
• A node aggregates information from their neighbors via neural

networks

B

A

D

C

E
One-hop Neighborhood of node A:

𝑵� = {𝐵, 𝐶, 𝐸}

Computation Graph of
node A

F

A

B

C

E

One-hop Neighborhood Aggregation:
𝒉�� = 𝑓(𝒉�, 𝒉�, 𝒉t)
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Neighborhood Aggregation (3)

Moreover:
• Every neighboring node has its won computation graph!

B

A

D

C

E

Computation Graph of
each node

F

B

C

E

A

D

A

A

D

F

Two-hop Neighborhood of node A:
𝑵� = {𝐷, 𝐹}

Unseen in one-hop
neighborhood
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Neighborhood Aggregation (4)

Stacking more neighborhood aggregation layers
• Nodes have embeddings at each layer
• Model can be arbitrary depth
• At Layer 0, embedding of node v ∈ 𝑉 is its input feature, i.e., 𝑥l.

A

B

C

E

A

D

A

A

D

Layer 2 Layer 0Layer 1

𝑥�

𝑥�

𝑥�

𝑥�

𝑥�

F 𝑥�

Slide from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

B

A

D

C

E

F
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Graph Convolution

Neighborhood aggregation can be viewed as a center-surround filter in
convolutional neural network (CNN).

Slide from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

Mathematically related to spectral graph convolutions (Bronstein et 
al., 2017)

Now
• How to aggregate information across layers!
• i.e., how to design the neural networks!
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Component 1: Information Construction

Generally speaking, the first main component:
1. Information Construction

Construct the information being propagated from one neighboring
node to the target node.

𝑚l→0
(Dy@) = 𝑓@

(Dy@) (ℎl
Dy@ , ℎ0

Dy@ , 𝑝l0
(Dy@))

The information being
propagated from node
𝑣 to the target 𝑢

Nodes’
previous layer
embeddings

Decay factor or
normalization

term

Neural
network

A

B

C

E
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Component 2: Neighborhood Aggregation

Generally speaking, the second main component:
2. Neighborhood Aggregation

Aggregate the information from the whole neighborhood.

ℎ𝒩�
(Dy@) = 𝑓V

(Dy@) ( ℎl
Dy@ , for 𝑣 ∈ 𝒩0)

The information
combining neighbors’

information

The information
obtained from the first

component

Aggregation
Function

A

B

C

E
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Component 3: Representation Update

Generally speaking, the third main component:
3. Representation Update

Integrate the neighborhood information with its own
representation.

ℎ0
(D) = 𝑓X

(Dy@) (ℎ𝒩�
Dy@ , ℎ0

(Dy@))

The updated
representation of 𝑢 at

the 𝑘-th layer

The representation of
the target node 𝑢 at
the (𝑘 − 1)-th layer

Integration
Function

A

B

C

E
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Graph Convolutional Network (GCN)

GCN from [Kipf et al., ICLR’2017]:

Kipf et al., ICLR’2017: Semisupervised Classification with Graph Convolutional Network.

ℎ0
(D) = 𝜎 ( 𝑊D s

l∈𝒩� ∪0

ℎl
Dy@

𝒩0 𝒩l
)

per-neighbor normalization:
𝑝0l
(Dy@) in Comp. 1

• Normalization varies across
neighbors

• Down-weights high degree
neighbors

Weighted sum:
Aggregation in

Comp. 2

The same neural network
for self and neighbor
embeddings in Comp.3
• More parameter sharing

Nonlinear
activation function
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GCN in Matrix Form

Can be rewritten in the matrix form
• Which is efficiently implemented using sparse batch operations

• Time complexity is 𝑂 𝐸

Kipf et al., ICLR’2017: Semisupervised Classification with Graph Convolutional Network.

𝐻(D) = 𝜎 (𝐷y
@
V 𝐴 + 𝐼 𝐷y

@
V𝐻(Dy@)𝑊D)

Laplacian Matrix for Graph 𝐺

Representation Matrix
at the 𝑘-th layer

𝑍 = 𝐻(�)

Final representation
matrix
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GraphSage

GraphSage from [Hamilton et al., NeurIPS’2017]:
• The most distinction is the generalized aggregation

Hamilton et al., NeurIPS’2017. Inductive Representation Learning on Large Graphs.

ℎ0
(D) = 𝜎 ( 𝑊@

D   AGG ℎl
Dy@ , ∀𝑣 ∈ 𝒩0 ,𝑊V

D ℎ0
(Dy@) )

ℎ𝒩�
(Dy@) = 𝑓V

(Dy@) ( ℎl
Dy@ , for 𝑣 ∈ 𝒩0)

Generalized Aggregation Function in Comp. 2
à Any differentiable function that maps a set of vectors to a single vector.

Integration Function in Comp.3 à concatenate
neighbors & self embeddings, instead of sum
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Generalized Aggregation in GraphSage
• Mean

• Pool
• Transform neighbor vectors and apply symmetric vector 

function.

• LSTM
• Apply LSTM to random permutation of neighbors.

Hamilton et al., NeurIPS’2017. Inductive Representation Learning on Large Graphs.
Slide from: Jure Leskovec et al. Representation Learning on Networks, Tutorial@WWW2018

AGG = s
∀l ∈𝒩�

ℎl
Dy@

|𝒩l|

AGG = 𝛾({𝑄ℎl
Dy@ , ∀𝑣 ∈ 𝒩0})

AGG = LSTM([ℎl
Dy@ , ∀𝑣 ∈ 𝒩0])

Element-wise mean/max
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Graph Attention Network (GAT)

GAT from [Velickovic et al., ICLR’2018]:
• The most distinction is the attentive neighborhood aggregation

ℎ𝒩�
(Dy@) = 𝑓V

(Dy@) ( ℎl
Dy@ , for 𝑣 ∈ 𝒩0)

Attentive Aggregation Function in Comp. 1&2
à Different neighbors have varying contributions when propagating information.
à Instead of fixed heuristic-based decay factor like GCN, GraphSage

Velickovic et al. Graph Attention Networks. ICLR 2018

A

B

C

E

0.5

0.3

0.2

ℎ0
(D) = 𝜎( s

l∈𝒩�

𝛼0,l 𝑊(D)ℎl
(Dy@))

Learned attentive weights
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Attention Weights in GAT
• Attention Network

• Multi-head Attention

Velickovic et al. Graph Attention Networks. ICLR 2018

ℎ0
(D) = 𝜎(

1
𝐿
s
®@

¯

s
l∈𝒩�

𝛼0,l
() 𝑊(,D)ℎl

(Dy@))

With 𝐿 Heads
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Simple Graph Convolution (SGC)

SGC from [Wu et al., ICML’2019]:
• Unnecessary complexity & redundant computation of GCN

Wu et al. Simplifying Graph Convolutional Networks. ICML 2019

Remove the nonlinearities 
between GCN layers

Use a single linear 
transformation
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SGC in Matrix Form

• SGC improves the efficiency of GCN largely without sacrificing 
accuracy, & even outperforms GCN on some tasks.

Wu et al. Simplifying Graph Convolutional Networks. ICML 2019

𝐻(D) = 𝜎 (𝐷y
@
V 𝐴 + 𝐼 𝐷y

@
V𝐻(Dy@)𝑊D)

Only linear feature
propagation is remained

𝑍 = 𝐻(�)GCN:

𝐻(D) = 𝐷y
@
V 𝐴 + 𝐼 𝐷y

@
V𝐻(Dy@) 𝑍 = 𝐻(�)SGC:
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Training
• After 𝐾 graph convolution layers (e.g., GCN, GraphSage, GAT, SGC),

we get output embeddings for each node.

• Upon these embeddings, we can define a loss function for a specific
task:

• Run stochastic gradient descent to train the aggregation parameters

𝑍 = 𝐻(�)

Node classification
ℒ(𝑍0)

Graph classification
ℒ(𝑍±)

Link prediction
ℒ(𝑍0, 𝑍l)

B

A

D

C

E

F

B

A

D

C

E

F

B

A

D

C

E

F
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e.g., Node Classification Task

ℒ = ∑l∈e 𝑦l log 𝜎 𝑧lq𝜃 + (1 − 𝑦l)log 1 − 𝜎 𝑧lq𝜃

B

A

D

C

E

F

Estimate the label of the target node:
• positive or negative?
• Belonging to one of 𝐶 classes

Ground-truth label
Trainable weights in the

classifier

GNN embeddings can be plug-and-play & serve other semi-
supervised & unsupervised & supervised tasks.
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Recent Research on GNN
• More Details in Previous Tutorials:

• Jure Leskovec et al. Representation Learning on Networks,
Tutorial@WWW2018

• Hamiltion & Jie Tang. Graph Representation Learning, Tutorial@AAAI2019
• Jie Tang et al. Representation Learning on Networks, Tutorial@WWW2019

• More Details in Survey Papers:
• Zhou et al., Graph Neural Networks: A Review of Methods and Applications
• Zhang et al., Deep Learning on Graphs: A Survey
• Wu et al., A Comprehensive Survey on Graph Neural Networks

• More Paper Collections in Github:
• https://github.com/thunlp/GNNPapers#survey-papers
• https://github.com/naganandy/graph-based-deep-learning-literature

84
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Recap Collaborative Filtering (CF)

• Collaborative Signals à Behavior Similarity of Users
• Similar users would have similar preference on items.

• User-Item Interaction Data à User-Item Bipartite Graph
• Edges indicate the user behaviors.

(𝒖𝟏 𝒊𝟏 )
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𝟑
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𝟏
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𝟒

5 ? ? ? …

3 4 ? ? …

? 1 2 4 …

... … … … …

𝟏

𝟐

𝟑

𝟏 𝟐 𝟑 𝟒
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Interaction Matrix

𝒖𝟐

𝒖𝟑

𝒖𝟏

𝒖𝟒

𝒊𝟏

𝒊𝟐

𝒊𝟑

𝒊𝟒

Interaction Graph
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Graph Convolutional Matrix Completion (GC-MC)

GC-MC from [Rianne et al., KDD’2018]
• View matrix completion as link prediction on interaction graph

• Rating Prediction à predict links in bipartite user-item graph

Rianne et al. Graph Convolutional Matrix Completion. KDD 2018

Generate high-quality embeddings of users and
items on the graph in an end-to-end fashion
• Previous solutions separate the graph feature

model and link prediction model
87



Graph Convolutional Encoder in GC-MC

• Comp.1: Information Construction:

• Comp.2: Neighborhood Aggregation:

• Comp.3: Representation Update:

Rianne et al. Graph Convolutional Matrix Completion. KDD 2018

Different 𝑊µ are assigned to different
rating level 𝑟.

Accumulation operation over neighbors
at all rating levels
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Rating Prediction in GC-MC
• Rating Prediction

• Model Training

• Others:
• One graph convolution layer achieved the best performance.
• Structural information can be combined with interaction graph

• Social networks, knowledge graphs, …

Rianne et al. Graph Convolutional Matrix Completion. KDD 2018

Trainable weights for
different rating levels

Negative log likelihood
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Spectral Collaborative Filtering

Zheng et al. Spectral Collaborative Filtering. RecSys 2018

SpectralCF from [Zheng et al., RecSys’2018]
• User-Item Interaction Graph

• GC-MC: use existing connectivity
• SpectralCF: discover hidden connectivity in the spectral domain

The connectivity between 𝑢@ and 𝑖V, 𝑖X, 𝑖Z
• Uncovered in the frequency domain
• Discovered in the spectral domain
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Spectral Convolution Filtering in SpectralCF

Zheng et al. Spectral Collaborative Filtering. RecSys 2018

However, eigen-decomposition of graph adjacency matrix is required
• A rather high complexity
• Difficult to support large-scale graphs

Spectral Convolution Filtering

Polynomial Approximation

91



Neural Graph Collaborative Filtering (NGCF)

NGCF from [Wang et al., SIGIR’2019]
• Revisit CF via high-order connectivity

• The paths that reach 𝑢@ from any node with the path length 𝑙
larger than 1 à unseen connectivity argued in SpectralCF!

• A natural way to encode collaborative signal in the interaction
graph structure

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

Why 𝑢@ may like 𝑖Z?
• 𝑢@ ← 𝑖V ← 𝑢V ← 𝑖Z
• 𝑢@ ← 𝑖X ← 𝑢X ← 𝑖Z
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First-order Connectivity Modeling

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

Inspired by GNNs
1. Propagate embeddings recursively on the user-item graph
2. Construct information flows in the embedding space

• Comp.1: Information Construction:

• Comp.2 & 3: Neighbor Aggregation & Representation Update:

message passed from 𝑖 to 𝑢

• message dependent on the affinity,
distinct from GCN, GraphSage, etc.

• Pass more information to similar nodes

all neighbors of 𝑢self-connections

discount factor
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High-order Connectivity Modeling

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

• Stack more embedding propagation layers to explore the high-order
connectivity

• The collaborative signal like u1 ← i2 ← u2 ← i4 can be captured in
the embedding propagation process.

• Collaborative signal can be injected into the representation
learning process.
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Overall Framework

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

The representations at different 
layers
• emphasize the messages 

passed over different 
connections

• have different contributions in 
reflecting user preference

95



Experiment Results —— Sparsity Issue

Wang et al. Neural Graph Collaborative Filtering. SIGIR 2019

user groups with different group sparsity levels

• NGCF consistently outperforms all other baselines on most user groups.

• Exploiting high-order connectivity facilitates the representation learning for 
inactive users.

• It might be promising to solve the sparsity issue in recommender systems
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tie

Influence

•User Profiling
•Behavior Modeling

•Social Tie
•Social Influence

•Triad & Group Formation
• Information Diffusion

Social Network Analysis

Social Recommendation

Social relation is of importance to help users filter information
• Tow graphs à user-item interaction graph + user-user social graph.

Snips from: Tang Jie et al. Representation Learning on Networks, Tutorial@WWW2019
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Graph Neural Networks for Social
Recommendation (GraphRec)

Fan et al. Graph Neural Networks for Social Recommendation. WWW 2019

GraphRec from [Fan et al, WWW’2019]
• User-Item Graph

• Interactions between users and items
• Users’ opinions on items (i.e., explicit feedback, ratings)

• User-User Graph
• Social relations have heterogeneous strengths

• Strong & weak ties are mixed together
• Users are likely to share more similar tastes with strong ties than weak ties.
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User Modeling in GraphRec
These two graphs provide user information from different angles
• Item Aggregation

• Item space: leverage user-item interactions to get user representations

• Social Aggregation
• Social space: use social relationships to get user representations

Opinion-aware representation of an interaction
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Item Modeling in GraphRec
• User Aggregation

• Consider both interactions & opinions to get item representations

• Rating Prediction
• Feed the concatenation of user & item representation into a neural network

(MLP) to get predictions.

Opinion-aware representation of an interaction

Attention network to differentiate the 
importance weight
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Neural Influence Diffusion Model (DiffNet)
DiffNet from [Wu et al, SIGIR’2019]
• Social Influence in Social Recommendation

• A user’s preference is influenced by her trusted users, with these trusted
users are influenced by their own social connections à high-order
connectivity

• Social influence recursively propagates & diffuses in social network!

Wu et al. A Neural Influence Diffusion Model for Social Recommendation. SIGIR 2019

One-hop trusted users Two-hop trusted users
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Diffusion Influence Aggregation in DiffNet

• Comp.1: Information Construction

• Comp.2: Diffusion Influence Aggregation

• Comp.3: Representation Update

Wu et al. A Neural Influence Diffusion Model for Social Recommendation. SIGIR 2019

User features

User ID Embeddings

Ego social network
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DANSER
DANSER from [Wu et al, WWW’2019]

Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in 
Recommender Systems. WWW 2019

Social homophily
• User static preference
• Unchanged & independent of

external contexts

Social influence
• User dynamic preference
• Change dynamically with 

specific contexts
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DANSER
DANSER from [Wu et al, WWW’2019]

Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in 
Recommender Systems. WWW 2019

Item-to-item homophily
• Item static attribute

Item-to-item influence
• Item dynamic attribute
• Depends on a specific context
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Dual GAT in User & Item Domains

Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in 
Recommender Systems. WWW 2019
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Summary: GNN for Social Recommendation

Graph Data User Modeling Item Modeling
GraphRec • Interaction Graph

• Social Network
First-order Connectivity
• historical items
• social relations

First-order Connectivity
• user feedback

DiffNet • Social Network High-order Connectivity
• social influence

First-order Connectivity
• user feedback

DANSER • Interaction Graph
• Social Network

First-order Connectivity
• social homophily

(static)
• social influence

(dynamic)

First-order connectivity
• item homophily

(static)
• item influence

(dynamic)

Social recommendation needs more guides from social network analysis:
• Behavior modeling, social influence, group formation, information

diffusion à from micro to macro! 112
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Sequential Recommendation

Sequential (Session-based) recommendation
• Given historical interactions, to predict the successive items that a

user is likely to interact with à sequential needs of users

• User interests are dynamic in sessions.
• Sequential pattern is of crucial importance.

Listen To Your Heart Dreaming Alone The Oak Tree Follow Your Heart
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Session-based Recommendation with GNNs (SR-GNN)

SR-GNN from [Wu et al, AAAI’2019]
• Sequential pattern of a transition à one session sequence
• Complex patterns of item transitions à all session sequences

Wu et al. Session-based Recommendation with Graph Neural Networks. AAAI 2019

Reorganize all session sequences into graph
structured data à session graph
• A directed graph 𝐺¾ over items
• Each edge (𝑣¾,1y@, 𝑣¾,1) means a user

clicks item 𝑣¾,1 after 𝑣¾,1y@ in session 𝑠

Ø Present the global preference in session
𝑠

treating a session sequences as a session
subgraph
Ø Present the current interest &

sequential needs of the user in session 𝑠
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Session Graphs with GNNs

Wu et al. Session-based Recommendation with Graph Neural Networks. AAAI 2019

𝐴¾ = [𝐴¾
(À0Á), 𝐴¾

(1Â)]
RNN Aggregator over

subgraphs

𝑦1 = MLP(Att(𝑣Â, 𝑣1))

Prediction conducted by a
MLP + Attention network
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Dynamic Graph Attention Network for Session-based
Social Recommendation (DGRec)

DGRec from [Song et al, WSDM’2019]
• Session + Social Recommendation à social networks

• User interests change across sessions, due to:
• Short-term preferences of user friends
• Long-term preferences of user friends

Song et al. Session-based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019
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Dynamic Social Recommendation

• Dynamic individual interest in current session à RNN

• Friends’ interest
• Short-term preferences à a friend’s latest online session

• Long-term preferences à a friend’s average interests, which is no item-
sensitive

• Unified representation

Song et al. Session-based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019

User session
representation

LSTM adopted on the
session sequence

Session sequence of
the user

User ID
embedding
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Dynamic Graph Attention Network

• Dynamic feature graph
• User + Friends graph
• Dynamic features à updated whenever a user consumed a new item.

• Attentive social aggregation

Song et al. Session-based Social Recommendation via Dynamic Graph Attention Networks. WSDM 2019

Level of influence or importance
of a friend to the target user

Final representation combining user
session interests & social influence
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Summary: GNN for Sequential Recommendation

Graph Data User Modeling Item Modeling

SR-GNN Directed Session
Graph

• Global preference in all
session sequences

• Local preference in a
session sequence

• Without ID information

Graph representations

DGRec Social Network • Short-term preference in
the latest session
(sequential pattern)

• Long-term preference in
all sessions (ID
Information)

• Social influence (graph)

ID embeddings

Sequential recommendation needs new & reasonable angles to organize
sequence data in the form of graph.
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Knowledge Graph-based Recommendation

Knowledge Graph (KG):
• Background knowledge on 

items
• Rich semantics & Relations
• Structural information

Benefit for Recommendation
• Narrow down search space
• Explore user interests

reasonably
• Offer explanations

𝒖𝟏 𝒖𝟐
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Genre
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Prior Works: Supervised Learning-based

Feature Engineering
• 𝑢@- 𝑖Z interaction as an data instance
• transfer item knowledge into a feature

vector is �⃗�=<𝑢@, 𝑖Z, 𝑒@, 𝑒V, 𝑒Z>

𝒖𝟏 𝒖𝟐

𝒊𝟏
Shape of You

𝒊𝟐
I See Fire

𝒊𝟑
Skin

𝒊𝟒
Castle on the Hill

𝒓 𝟏

Interact 𝒓𝟏
Interact

𝒓
𝟏

Interact

𝒆𝟏
Ed Sheeran

𝒆𝟐
÷ 𝒆𝟑

Pop

𝒆𝟒
Folk

𝒓𝟐
IsSongOf 𝒓𝟑

SungBy
𝒓𝟒

Genre

𝒓𝟓
Genre

To estimate 𝒖𝟏′s preference on 𝒊𝟐

Prediction Modeling
• A supervised learning model
• e.g., FM, NFM, Wide&Deep ……

Limitations
• Semantic relations are ignored
• Graph structure is ignored
• CF signals are captured in an implicit fashion
• High-order connectivity/relation are ignored 123



Prior Works: Regularized-based

Representation Learning
• 𝑖Z-related KG triplets regularize the

learning of its representation
• Translational Principle

• Head + Relation ≈ Tail

𝒖𝟏 𝒖𝟐
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𝒓𝟓
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To estimate 𝒖𝟏′s preference on 𝒊𝟐

Interaction Modeling
• Reconstruct direct user-item

interactions
• e.g., NCF, MF, …

Limitations
• High-order connectivity between user and item

nodes are modeled in an implicit fashion
• It fails to synthesize high-order relations. 124



Prior Works: Path-based

Representation Learning
• Paths connecting 𝑢@ and 𝑖Z to represent

their connectivity
• 𝑢@ → 𝑖@ → 𝑒@ → 𝑖V.

𝒖𝟏 𝒖𝟐
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To estimate 𝒖𝟏′s preference on 𝒊𝟐

Interaction Modeling
• Information fusion of multiple paths
• A supervised learning model

Limitations
• Require domain knowledge to define meta-paths
• Require labor-intensive feature engineering to

extract qualified paths
• Have rather high complexity 125



Knowledge Graph Convolution Network (KGCN)

KGCN from [Wang et al, WWW’2019]
• Item graph à KG entities are used to enrich item representation

Wang et al. Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019

Comp.1 & 2 Comp.3 Prediction

KG entities connected
with the target item

Attention score
of user-relation

User ID embeddings à
users are excluded from

the propagation.
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Knowledge Graph Neural Networks with Label
Smoothness Regularization (KGNN-LS)

KGNN-LS is an extension of KGCN from [Wang et al, KDD’2019]
• Label smoothness à adjacent items in KG are likely to have similar

user relevance labels/scores.

Wang et al. Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for
Recommender Systems. KDD 2019
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Knowledge Graph Attention Network (KGAT)

KGAT from [Wang et al, KDD’2019]

Wang et al. KGAT: Knowledge Attention Network for Recommendation. KDD 2019

Knowledge Graph
• Item-Item External Connections

𝑖@ →
µÅ 𝑒@

User-Item Bipartite Graph
• User-Item Direct Interactions

𝑢@→
µÆ 𝑖@

Collaborative Knowledge Graph
• High-order connectivity between users

and items
𝑢@→

µÆ 𝑖@ →
µÅ 𝑒@

yµÅ 𝑖V è 𝑢@→
µÆ 𝑖V

• Reasoning ability & Explainability
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Attentive Embedding Propagation in KGAT
𝒖𝟏 𝒖𝟐
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Attentive Embedding Propagation,
inspired by GNNs
• Propagate embeddings recursively

on the graph

• Reveal the importance of a high-
order connectivity via relation-
aware attentions

• Construct information flows in the
embedding space
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Attentive Embedding Propagation in KGAT

• Comp.1: Information Propagation

• Comp.2: Knowledge-aware Attention Aggregation

• Comp.3: Representation Update

𝒊𝟑

𝒖𝟐

𝒆𝟏

𝒆𝟑

𝒓𝟏
𝒓𝟐

𝒓𝟑
The messages accounting for
first-order connectivity

The set of triples, where the
target node is the head entity

Tail representation

decay factor on 
each propagation

the attention score is dependent on 
the distance of 𝑒Á and 𝑒Ç in 𝑟’s space

Similar to NGCF
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Model Training

Similar to NGCF, the representations 
at different layers
• emphasize the messages passed 

over different connections
• have different contributions in 

reflecting user preference
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Experiment Results —— Sparsity Issue

user groups with different group sparsity levels

• KGAT outperforms the other models in most cases, especially on the two 
sparsest user groups in Amazon-Book and Yelp2018.

• It again verifies the significance of high-order connectivity modeling:
• contains the lower-order connectivity
• enriches the representations of inactive users via recursive embedding 

propagation 133



Case Study for Explainable Recommendation

• KGAT captures the behavior-based and attribute-based high-order 
connectivity, which play a key role to infer user preferences.

• The explanation can be “The Last Colony is recommended since you have 
watched Old Man’s War written by the same author John Scalzi.” 134
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Summary

The data is more closely connected that we might think!

User-Item Interactions User/Item Profiles Knowledge Graph

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒊𝟏

𝒊𝟐

𝒊𝟑

𝒊𝟒

𝒊𝟓

𝒖𝟏

𝒖𝟑

Age 18-24

Gender: Male

Geo: Beijing

Age 25-30

𝒊𝟑
Logan

𝒊𝟏
The Greatest Showman

𝒊𝟐
X-Men

𝒆𝟐
Hugh Jackman

𝒓𝟒
DirectedBy

𝒓𝟑
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𝒆𝟏
James Mangold

𝒊𝟒
The Prestige

𝒓𝟐
ProducedBy

𝒆𝟏
James Mangold

Limited Representation Ability

Suboptimal Model Capacity

Limited Reasoning Ability

Information Propagation along with the connections

High-order connectivity complementary to user-item
interactions

High-order connectivity interpreting user intents136



• Dynamic Graphs
• Graph for recommendation evolves over time

• Online User-Item Interactions, Trending of (fashion) items,
CTR prediction …

• Challenges:
• How to efficiently & incrementally update representations?
• How to incorporate edge timing?
• How to forget old/irrelevant information? …

• Adversarial Learning
• Attack & Defense

• Node Features + Edge Features + Graph Structure
• Applications:

• Malicious detection, Fraud detection …
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• Casual Inference
• Get intents behind user behaviors

• What contexts à what behaviors are reasonable
• Towards explainable recommendation

• Neural Symbolic Reasoning
• Mimic Human reasoning
• Study & Understand user behaviors
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